IBM SPSS Web Report - Region 2 - 42 binary variables 79 cases varimax rotated 8-7-6 factors.spv   


Contents
Previous
Next
Help
Controls disabled by the system
 

 
Log
Log - Log - February 17, 2020

FILTER OFF.
USE ALL.
EXECUTE.
USE ALL.
COMPUTE filter_$=(REGION = 2).
VARIABLE LABELS filter_$ 'REGION = 2 (FILTER)'.
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'.
FORMATS filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE.
FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3d L3e L3f L6 L7 L8a L8b L8c L8d
    L8g L8h L8i L8k M1trust M2dTradBIN M2eGVHBIN M2fVHBIN M2jPoliceBIN M2lTeachBIN M2mSchABIN
    M2nRelLeBIN M3aFamilBIN M3bRelatBIN M3cOwnVBIN M3dOutsVBIN M3eSaEthBIN M3fOutsEtBIN M3gSaChMBIN
    M3hNSaChMBIN
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3d L3e L3f L6 L7 L8a L8b L8c L8d
    L8g L8h L8i L8k M1trust M2dTradBIN M2eGVHBIN M2fVHBIN M2jPoliceBIN M2lTeachBIN M2mSchABIN
    M2nRelLeBIN M3aFamilBIN M3bRelatBIN M3cOwnVBIN M3dOutsVBIN M3eSaEthBIN M3fOutsEtBIN M3gSaChMBIN
    M3hNSaChMBIN
  /PRINT UNIVARIATE INITIAL EXTRACTION ROTATION
  /PLOT EIGEN ROTATION
  /CRITERIA FACTORS(8) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Descriptive Statistics - February 17, 2020
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 44 rows
  Mean Std. Deviation Analysis N
K1a Lending money to family members .59 .494 79
K1b Lending money to relatives .71 .457 79
K1c Lending money to people in your own village .57 .498 79
K1d Lending money to people outside the village .23 .422 79
K1e Lending money to people from the same mosque/ church .19 .395 79
K2a Lending tools like axes, hoes etc. to family members .77 .422 79
K2b Lending tools like axes, hoes etc. to relatives outside the household .85 .361 79
K2c Lending tools like axes, hoes etc. to people in your own village .73 .445 79
K2d Lending tools like axes, hoes etc. to people outside the village .20 .404 79
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .28 .451 79
L2 Participated in cooperative agricultural work .54 .501 79
L3.a. Participated last 12 months in cooperative work of preparing a garden .29 .457 79
L3.b. Participated last12 months in cooperative work of planting .10 .304 79
L3.d. Participated last 12 months in cooperative work of weeding .22 .414 79
L3.e. Participated last 12 months in cooperative work of harvesting .33 .473 79
L3.f. Participated last 12 months in cooperative work of other agriculture work .34 .477 79
L6 Participation in other exchange work than agriculture .65 .481 79
L7 Participated in public works without payment during the last year .53 .502 79
L8.a. Participated in school project over the last 12 months .49 .503 79
L8.b. Participated in road project over the last 12 months .43 .498 79
L8.c. Participated in bridge project over the last 12 months .20 .404 79
L8.d. Participated in church project over the last 12 months .25 .438 79
L8.g. Participated in health centre project over the last 12 months .14 .348 79
L8.h. Participated in irrigation project over the last 12 months .10 .304 79
L8.i. Participated in borehole project over the last 12 months .30 .463 79
L8.k. Participated in graveyard clearing project over the last 12 months .37 .485 79
M1 Most people can be trusted (1) or you cannot be too careful (0) .52 .503 79
M2.d. Trust in Traditional Authorities .61 .491 79
M2.e. Trust in group village headmen .54 .501 79
M2.f. Trust in village headmen .66 .477 79
M2.j. Trust in police .61 .491 79
M2.l. Trust in teachers .58 .496 79
M2.m.Trust in school administrators .57 .498 79
M2.n. Trust in religious leaders .71 .457 79
M3.a. Trust in family members .90 .304 79
M3.b. Trust in relatives .84 .373 79
M3.c. Trust in people in own village .54 .501 79
M3.d. Trust in people outside the village .30 .463 79
M3.e. Trust in people of same ethnic group .39 .491 79
M3.f. Trust in people outside ethnic group .27 .445 79
M3.g. Trust in people from same church/ mosque .51 .503 79
M3.h. Trust in people not from same church/ mosque .32 .468 79
Factor Analysis
Factor Analysis - Communalities - February 17, 2020
CommunalitiesCommunalities, table, 2 levels of column headers and 1 levels of row headers, table with 5 columns and 46 rows
  Raw Rescaled
Initial Extraction Initial Extraction
K1a Lending money to family members .244 .187 1.000 .767
K1b Lending money to relatives .209 .157 1.000 .751
K1c Lending money to people in your own village .248 .190 1.000 .767
K1d Lending money to people outside the village .178 .111 1.000 .623
K1e Lending money to people from the same mosque/ church .156 .093 1.000 .596
K2a Lending tools like axes, hoes etc. to family members .178 .118 1.000 .660
K2b Lending tools like axes, hoes etc. to relatives outside the household .130 .085 1.000 .653
K2c Lending tools like axes, hoes etc. to people in your own village .198 .139 1.000 .705
K2d Lending tools like axes, hoes etc. to people outside the village .164 .100 1.000 .613
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .204 .172 1.000 .846
L2 Participated in cooperative agricultural work .251 .201 1.000 .798
L3.a. Participated last 12 months in cooperative work of preparing a garden .209 .120 1.000 .573
L3.b. Participated last12 months in cooperative work of planting .092 .034 1.000 .368
L3.d. Participated last 12 months in cooperative work of weeding .171 .121 1.000 .705
L3.e. Participated last 12 months in cooperative work of harvesting .224 .152 1.000 .681
L3.f. Participated last 12 months in cooperative work of other agriculture work .228 .154 1.000 .675
L6 Participation in other exchange work than agriculture .232 .126 1.000 .542
L7 Participated in public works without payment during the last year .252 .228 1.000 .905
L8.a. Participated in school project over the last 12 months .253 .218 1.000 .860
L8.b. Participated in road project over the last 12 months .248 .178 1.000 .715
L8.c. Participated in bridge project over the last 12 months .164 .108 1.000 .661
L8.d. Participated in church project over the last 12 months .191 .147 1.000 .770
L8.g. Participated in health centre project over the last 12 months .121 .067 1.000 .552
L8.h. Participated in irrigation project over the last 12 months .092 .044 1.000 .480
L8.i. Participated in borehole project over the last 12 months .214 .172 1.000 .804
L8.k. Participated in graveyard clearing project over the last 12 months .235 .166 1.000 .704
M1 Most people can be trusted (1) or you cannot be too careful (0) .253 .156 1.000 .615
M2.d. Trust in Traditional Authorities .241 .163 1.000 .677
M2.e. Trust in group village headmen .251 .200 1.000 .798
M2.f. Trust in village headmen .228 .177 1.000 .778
M2.j. Trust in police .241 .147 1.000 .610
M2.l. Trust in teachers .246 .196 1.000 .795
M2.m.Trust in school administrators .248 .183 1.000 .736
M2.n. Trust in religious leaders .209 .144 1.000 .690
M3.a. Trust in family members .092 .047 1.000 .505
M3.b. Trust in relatives .139 .068 1.000 .489
M3.c. Trust in people in own village .251 .158 1.000 .630
M3.d. Trust in people outside the village .214 .147 1.000 .688
M3.e. Trust in people of same ethnic group .241 .177 1.000 .733
M3.f. Trust in people outside ethnic group .198 .144 1.000 .731
M3.g. Trust in people from same church/ mosque .253 .179 1.000 .709
M3.h. Trust in people not from same church/ mosque .219 .165 1.000 .755
Extraction Method: Principal Component Analysis.
Factor Analysis
Factor Analysis - Total Variance Explained - February 17, 2020
Total Variance ExplainedTotal Variance Explained, table, 2 levels of column headers and 2 levels of row headers, table with 11 columns and 89 rows
  Component Initial Eigenvaluesa Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 2.129 24.718 24.718 2.129 24.718 24.718 1.162 13.494 13.494
2 1.268 14.717 39.435 1.268 14.717 39.435 1.033 11.996 25.490
3 .676 7.844 47.279 .676 7.844 47.279 .806 9.362 34.852
4 .515 5.974 53.253 .515 5.974 53.253 .744 8.635 43.486
5 .437 5.076 58.329 .437 5.076 58.329 .685 7.953 51.439
6 .395 4.590 62.918 .395 4.590 62.918 .647 7.515 58.954
7 .335 3.885 66.803 .335 3.885 66.803 .472 5.482 64.437
8 .286 3.323 70.126 .286 3.323 70.126 .490 5.689 70.126
9 .227 2.636 72.762            
10 .201 2.333 75.095            
11 .185 2.148 77.242            
12 .167 1.934 79.176            
13 .160 1.856 81.032            
14 .143 1.660 82.693            
15 .138 1.597 84.289            
16 .131 1.526 85.815            
17 .111 1.285 87.101            
18 .107 1.238 88.338            
19 .100 1.165 89.503            
20 .092 1.072 90.576            
21 .088 1.019 91.595            
22 .073 .846 92.440            
23 .073 .842 93.282            
24 .068 .792 94.074            
25 .060 .696 94.770            
26 .055 .633 95.403            
27 .050 .584 95.987            
28 .048 .553 96.540            
29 .042 .491 97.031            
30 .037 .424 97.455            
31 .034 .394 97.850            
32 .030 .345 98.195            
33 .029 .341 98.535            
34 .024 .279 98.815            
35 .023 .268 99.083            
36 .021 .241 99.324            
37 .015 .174 99.498            
38 .013 .145 99.643            
39 .011 .133 99.776            
40 .009 .100 99.877            
41 .007 .079 99.956            
42 .004 .044 100.000            
Rescaled 1 2.129 24.718 24.718 9.548 22.734 22.734 5.130 12.214 12.214
2 1.268 14.717 39.435 5.762 13.719 36.453 4.625 11.012 23.226
3 .676 7.844 47.279 3.556 8.468 44.921 4.184 9.961 33.187
4 .515 5.974 53.253 2.394 5.699 50.620 3.347 7.970 41.157
5 .437 5.076 58.329 2.268 5.400 56.021 3.328 7.924 49.082
6 .395 4.590 62.918 2.069 4.926 60.947 3.314 7.890 56.972
7 .335 3.885 66.803 1.674 3.985 64.933 2.692 6.409 63.381
8 .286 3.323 70.126 1.439 3.426 68.358 2.090 4.977 68.358
9 .227 2.636 72.762            
10 .201 2.333 75.095            
11 .185 2.148 77.242            
12 .167 1.934 79.176            
13 .160 1.856 81.032            
14 .143 1.660 82.693            
15 .138 1.597 84.289            
16 .131 1.526 85.815            
17 .111 1.285 87.101            
18 .107 1.238 88.338            
19 .100 1.165 89.503            
20 .092 1.072 90.576            
21 .088 1.019 91.595            
22 .073 .846 92.440            
23 .073 .842 93.282            
24 .068 .792 94.074            
25 .060 .696 94.770            
26 .055 .633 95.403            
27 .050 .584 95.987            
28 .048 .553 96.540            
29 .042 .491 97.031            
30 .037 .424 97.455            
31 .034 .394 97.850            
32 .030 .345 98.195            
33 .029 .341 98.535            
34 .024 .279 98.815            
35 .023 .268 99.083            
36 .021 .241 99.324            
37 .015 .174 99.498            
38 .013 .145 99.643            
39 .011 .133 99.776            
40 .009 .100 99.877            
41 .007 .079 99.956            
42 .004 .044 100.000            
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.
Factor Analysis
Factor Analysis - Scree Plot - February 17, 2020
Scree Plot Component Number: 42
Eigenvalue: 0.0038 Component Number: 41
Eigenvalue: 0.0068 Component Number: 40
Eigenvalue: 0.0086 Component Number: 39
Eigenvalue: 0.0115 Component Number: 38
Eigenvalue: 0.0125 Component Number: 37
Eigenvalue: 0.0150 Component Number: 36
Eigenvalue: 0.0207 Component Number: 35
Eigenvalue: 0.0231 Component Number: 34
Eigenvalue: 0.0241 Component Number: 33
Eigenvalue: 0.0294 Component Number: 32
Eigenvalue: 0.0297 Component Number: 31
Eigenvalue: 0.0340 Component Number: 30
Eigenvalue: 0.0365 Component Number: 29
Eigenvalue: 0.0423 Component Number: 28
Eigenvalue: 0.0477 Component Number: 27
Eigenvalue: 0.0503 Component Number: 26
Eigenvalue: 0.0545 Component Number: 25
Eigenvalue: 0.0600 Component Number: 24
Eigenvalue: 0.0682 Component Number: 23
Eigenvalue: 0.0725 Component Number: 22
Eigenvalue: 0.0728 Component Number: 21
Eigenvalue: 0.0878 Component Number: 20
Eigenvalue: 0.0924 Component Number: 19
Eigenvalue: 0.1003 Component Number: 18
Eigenvalue: 0.1066 Component Number: 17
Eigenvalue: 0.1107 Component Number: 16
Eigenvalue: 0.1315 Component Number: 15
Eigenvalue: 0.1375 Component Number: 14
Eigenvalue: 0.1430 Component Number: 13
Eigenvalue: 0.1599 Component Number: 12
Eigenvalue: 0.1666 Component Number: 11
Eigenvalue: 0.1850 Component Number: 10
Eigenvalue: 0.2010 Component Number: 9
Eigenvalue: 0.2270 Component Number: 8
Eigenvalue: 0.2862 Component Number: 7
Eigenvalue: 0.3347 Component Number: 6
Eigenvalue: 0.3953 Component Number: 5
Eigenvalue: 0.4372 Component Number: 4
Eigenvalue: 0.5146 Component Number: 3
Eigenvalue: 0.6757 Component Number: 2
Eigenvalue: 1.2678 Component Number: 1
Eigenvalue: 2.1292 Component Number: 41
Eigenvalue: 0.0068 Component Number: 40
Eigenvalue: 0.0086 Component Number: 39
Eigenvalue: 0.0115 Component Number: 38
Eigenvalue: 0.0125 Component Number: 37
Eigenvalue: 0.0150 Component Number: 36
Eigenvalue: 0.0207 Component Number: 35
Eigenvalue: 0.0231 Component Number: 34
Eigenvalue: 0.0241 Component Number: 33
Eigenvalue: 0.0294 Component Number: 32
Eigenvalue: 0.0297 Component Number: 31
Eigenvalue: 0.0340 Component Number: 30
Eigenvalue: 0.0365 Component Number: 29
Eigenvalue: 0.0423 Component Number: 28
Eigenvalue: 0.0477 Component Number: 27
Eigenvalue: 0.0503 Component Number: 26
Eigenvalue: 0.0545 Component Number: 25
Eigenvalue: 0.0600 Component Number: 24
Eigenvalue: 0.0682 Component Number: 23
Eigenvalue: 0.0725 Component Number: 22
Eigenvalue: 0.0728 Component Number: 21
Eigenvalue: 0.0878 Component Number: 20
Eigenvalue: 0.0924 Component Number: 19
Eigenvalue: 0.1003 Component Number: 18
Eigenvalue: 0.1066 Component Number: 17
Eigenvalue: 0.1107 Component Number: 16
Eigenvalue: 0.1315 Component Number: 15
Eigenvalue: 0.1375 Component Number: 14
Eigenvalue: 0.1430 Component Number: 13
Eigenvalue: 0.1599 Component Number: 12
Eigenvalue: 0.1666 Component Number: 11
Eigenvalue: 0.1850 Component Number: 10
Eigenvalue: 0.2010 Component Number: 9
Eigenvalue: 0.2270 Component Number: 8
Eigenvalue: 0.2862 Component Number: 7
Eigenvalue: 0.3347 Component Number: 6
Eigenvalue: 0.3953 Component Number: 5
Eigenvalue: 0.4372 Component Number: 4
Eigenvalue: 0.5146 Component Number: 3
Eigenvalue: 0.6757 Component Number: 2
Eigenvalue: 1.2678 Component Number: 1
Eigenvalue: 2.1292 0.0 0.5 1.0 1.5 2.0 2.5 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.003811034910513529,"max":2.129201073743022,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,2.129201073743022],[1,1.267759028890319],[2,0.6756927609942726],[3,0.5146040562882145],[4,0.4372197527833368],[5,0.3953447057132984],[6,0.3346506899251034],[7,0.2862485640988612],[8,0.2270367582334641],[9,0.2009531390085752],[10,0.1850122705186145],[11,0.1665891404811874],[12,0.1598911211268763],[13,0.1430190966953667],[14,0.1375280686058958],[15,0.1314520969279299],[16,0.1107165314582841],[17,0.1066318136043668],[18,0.1003431292237114],[19,0.09237377140142342],[20,0.08776311836076917],[21,0.07283713193109544],[22,0.07252468316261708],[23,0.06822034829648929],[24,0.0599670132675816],[25,0.05453898159717519],[26,0.05026379121950589],[27,0.04767209186653266],[28,0.04228702268990851],[29,0.03654258941834906],[30,0.03395827139397963],[31,0.02973489246748427],[32,0.02935002338214026],[33,0.02405448163316533],[34,0.02309339174400565],[35,0.02074189957135905],[36,0.01499602073666641],[37,0.0125320356218092],[38,0.01147767710240499],[39,0.008640931113229647],[40,0.006811334396415845],[41,0.003811034910513529]]}],"size":{"width":851.0,"height":501.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis
Factor Analysis - Component Matrix - February 17, 2020
Component MatrixaComponent Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 17 columns and 48 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
K1a Lending money to family members .207 -.204 -.096 .156 .165 .032 .164 .119 .418 -.413 -.195 .316 .334 .065 .332 .240
K1b Lending money to relatives .238 -.209 .061 .081 .144 -.088 .107 .080 .520 -.457 .134 .176 .315 -.192 .233 .175
K1c Lending money to people in your own village .280 -.143 .129 .125 .138 -.101 .172 -.018 .562 -.288 .260 .250 .277 -.203 .345 -.036
K1d Lending money to people outside the village .091 -.039 .191 .132 .056 -.204 .013 -.050 .215 -.092 .451 .312 .134 -.484 .032 -.118
K1e Lending money to people from the same mosque/ church .105 -.003 .166 -.085 .165 -.080 -.110 .039 .265 -.009 .420 -.216 .417 -.203 -.280 .099
K2a Lending tools like axes, hoes etc. to family members .176 -.110 .000 .175 .139 .138 .075 .011 .416 -.260 -.001 .414 .330 .326 .178 .026
K2b Lending tools like axes, hoes etc. to relatives outside the household .126 -.060 .092 .098 .123 .171 .004 -.058 .348 -.166 .255 .272 .341 .473 .012 -.161
K2c Lending tools like axes, hoes etc. to people in your own village -.015 -.065 .185 .137 .192 .177 -.115 -.017 -.034 -.146 .415 .309 .433 .399 -.258 -.039
K2d Lending tools like axes, hoes etc. to people outside the village -.006 .151 .157 .034 .168 .080 -.130 -.002 -.014 .374 .387 .084 .416 .198 -.321 -.006
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church -.122 .181 .217 -.052 .088 .227 -.110 .058 -.270 .402 .481 -.115 .194 .503 -.243 .128
L2 Participated in cooperative agricultural work .336 -.089 .193 -.131 -.132 .076 .015 .043 .670 -.179 .386 -.261 -.264 .151 .030 .087
L3.a. Participated last 12 months in cooperative work of preparing a garden .216 -.031 .188 -.102 -.006 -.107 -.039 .116 .473 -.068 .411 -.222 -.012 -.234 -.085 .253
L3.b. Participated last12 months in cooperative work of planting .032 -.031 .136 -.026 -.094 -.040 .027 .043 .105 -.101 .446 -.085 -.309 -.131 .090 .141
L3.d. Participated last 12 months in cooperative work of weeding .149 .001 .270 -.062 -.010 -.119 -.073 .044 .359 .003 .654 -.149 -.025 -.287 -.178 .107
L3.e. Participated last 12 months in cooperative work of harvesting .262 -.074 .228 -.069 -.093 -.071 .040 -.076 .554 -.157 .483 -.146 -.197 -.150 .085 -.161
L3.f. Participated last 12 months in cooperative work of other agriculture work .318 -.066 .017 -.066 -.140 .148 .050 -.008 .665 -.138 .036 -.139 -.292 .310 .105 -.017
L6 Participation in other exchange work than agriculture .239 -.138 .039 -.114 -.005 .090 -.053 .154 .497 -.286 .082 -.238 -.010 .187 -.109 .321
L7 Participated in public works without payment during the last year -.454 .127 .026 -.006 .042 -.052 .024 .026 -.903 .252 .052 -.011 .085 -.104 .048 .051
L8.a. Participated in school project over the last 12 months -.432 .133 .071 .055 .035 -.021 .057 .011 -.859 .265 .140 .110 .069 -.042 .114 .021
L8.b. Participated in road project over the last 12 months -.363 .170 .084 .051 .053 -.052 .033 .031 -.728 .342 .169 .103 .105 -.104 .066 .062
L8.c. Participated in bridge project over the last 12 months -.161 .227 .099 .013 .059 -.061 .090 .075 -.397 .561 .245 .032 .145 -.152 .223 .184
L8.d. Participated in church project over the last 12 months -.216 .220 .155 -.067 -.022 .027 .132 .075 -.494 .502 .353 -.153 -.050 .061 .301 .171
L8.g. Participated in health centre project over the last 12 months -.108 .152 .139 -.025 .055 .088 .030 .023 -.309 .438 .399 -.072 .159 .252 .087 .066
L8.h. Participated in irrigation project over the last 12 months -.089 .044 .081 -.044 -.107 .013 .114 .036 -.292 .144 .266 -.145 -.354 .041 .376 .119
L8.i. Participated in borehole project over the last 12 months -.271 .189 .116 -.030 -.071 .014 .190 .085 -.586 .409 .251 -.064 -.154 .030 .411 .183
L8.k. Participated in graveyard clearing project over the last 12 months -.327 .040 -.124 .039 .123 -.122 -.047 .089 -.675 .082 -.255 .080 .254 -.252 -.097 .183
M1 Most people can be trusted (1) or you cannot be too careful (0) .352 .150 -.005 .001 .010 -.081 -.049 -.012 .700 .297 -.011 .002 .020 -.161 -.098 -.024
M2.d. Trust in Traditional Authorities .124 .231 -.133 -.175 .125 .138 .006 .106 .253 .470 -.271 -.356 .255 .282 .013 .216
M2.e. Trust in group village headmen .226 .243 -.155 -.196 .087 -.063 .001 .129 .451 .485 -.309 -.390 .173 -.125 .002 .257
M2.f. Trust in village headmen .244 .193 -.117 -.206 .135 -.066 -.041 .016 .511 .404 -.245 -.431 .284 -.138 -.086 .034
M2.j. Trust in police .218 .261 -.053 -.001 .058 -.108 -.031 -.113 .444 .530 -.109 -.003 .119 -.219 -.064 -.231
M2.l. Trust in teachers .114 .263 -.002 -.149 .143 .066 .193 -.171 .230 .530 -.004 -.300 .288 .133 .388 -.345
M2.m.Trust in school administrators .231 .228 .056 -.082 .020 .062 .166 -.188 .465 .458 .113 -.164 .039 .125 .334 -.377
M2.n. Trust in religious leaders .216 .176 -.206 .050 .089 -.059 -.066 -.079 .471 .385 -.450 .109 .195 -.129 -.145 -.172
M3.a. Trust in family members .135 .025 -.034 .051 .031 -.076 .053 .121 .444 .081 -.111 .167 .101 -.249 .175 .398
M3.b. Trust in relatives .196 .043 -.036 -.004 .002 -.030 .066 .146 .525 .116 -.095 -.012 .005 -.081 .177 .391
M3.c. Trust in people in own village .217 .220 -.097 .180 -.032 .029 .086 .110 .433 .438 -.193 .360 -.063 .058 .172 .218
M3.d. Trust in people outside the village .216 .176 -.071 .164 -.166 .093 .016 .042 .466 .380 -.152 .353 -.358 .201 .035 .091
M3.e. Trust in people of same ethnic group .183 .328 .066 .114 -.120 -.022 -.044 .041 .373 .668 .134 .232 -.243 -.044 -.090 .084
M3.f. Trust in people outside ethnic group .144 .229 -.054 .191 -.098 .070 -.088 .097 .323 .515 -.121 .430 -.221 .158 -.198 .218
M3.g. Trust in people from same church/ mosque .201 .290 .135 .120 -.011 -.102 -.100 -.037 .400 .577 .267 .239 -.022 -.202 -.200 -.074
M3.h. Trust in people not from same church/ mosque .097 .321 .052 .206 -.077 -.004 -.017 -.039 .207 .686 .110 .441 -.163 -.008 -.036 -.084
Extraction Method: Principal Component Analysis.
a. 8 components extracted.
Factor Analysis
Factor Analysis - Rotated Component Matrix - February 17, 2020
Rotated Component MatrixaRotated Component Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 17 columns and 48 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
K1a Lending money to family members .071 -.026 -.116 .023 .404 -.051 -.012 -.040 .144 -.052 -.236 .046 .817 -.104 -.023 -.080
K1b Lending money to relatives .098 -.057 -.107 .002 .329 .155 -.015 -.014 .215 -.125 -.235 .004 .719 .339 -.033 -.030
K1c Lending money to people in your own village .110 .007 -.077 -.055 .344 .195 -.005 .115 .220 .014 -.154 -.110 .690 .391 -.011 .230
K1d Lending money to people outside the village -.048 .051 -.037 -.125 .117 .269 -.003 .055 -.113 .121 -.087 -.296 .277 .638 -.006 .130
K1e Lending money to people from the same mosque/ church .008 -.053 -.049 .107 .020 .240 .135 .003 .021 -.134 -.125 .270 .050 .609 .341 .008
K2a Lending tools like axes, hoes etc. to family members .092 .038 -.099 -.043 .273 -.060 .131 .024 .219 .090 -.235 -.102 .647 -.142 .311 .057
K2b Lending tools like axes, hoes etc. to relatives outside the household .106 .012 -.065 -.057 .136 -.018 .208 .065 .294 .032 -.180 -.158 .376 -.049 .576 .180
K2c Lending tools like axes, hoes etc. to people in your own village -.010 -.027 -.041 -.105 .080 .030 .343 -.032 -.022 -.061 -.092 -.236 .179 .067 .771 -.071
K2d Lending tools like axes, hoes etc. to people outside the village -.070 .072 .022 .053 -.039 .086 .277 .036 -.174 .178 .055 .132 -.097 .214 .684 .088
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church -.009 .026 .189 .051 -.137 .001 .337 -.021 -.019 .057 .419 .114 -.304 .003 .748 -.046
L2 Participated in cooperative agricultural work .408 .022 .002 .040 .042 .174 .013 .004 .813 .045 .003 .080 .084 .348 .025 .008
L3.a. Participated last 12 months in cooperative work of preparing a garden .165 .011 .007 .097 .049 .279 .001 -.049 .362 .023 .015 .212 .107 .611 .003 -.106
L3.b. Participated last12 months in cooperative work of planting .091 .001 .084 -.051 -.007 .116 -.032 -.036 .300 .003 .278 -.167 -.022 .383 -.106 -.120
L3.d. Participated last 12 months in cooperative work of weeding .114 .025 .030 .010 -.013 .320 .055 -.014 .275 .060 .072 .024 -.031 .774 .133 -.034
L3.e. Participated last 12 months in cooperative work of harvesting .265 .013 -.014 -.057 .036 .256 -.033 .102 .559 .028 -.030 -.121 .076 .542 -.069 .216
L3.f. Participated last 12 months in cooperative work of other agriculture work .372 .068 -.058 .039 .061 -.013 -.025 .042 .779 .142 -.121 .082 .128 -.028 -.053 .088
L6 Participation in other exchange work than agriculture .267 -.048 -.070 .132 .088 .068 .042 -.124 .556 -.099 -.145 .274 .182 .140 .088 -.258
L7 Participated in public works without payment during the last year -.350 -.098 .245 -.063 -.157 -.072 .027 -.042 -.696 -.195 .488 -.126 -.313 -.144 .054 -.084
L8.a. Participated in school project over the last 12 months -.327 -.057 .268 -.115 -.117 -.072 .058 -.020 -.649 -.113 .533 -.229 -.233 -.144 .114 -.040
L8.b. Participated in road project over the last 12 months -.313 -.011 .245 -.065 -.105 -.017 .064 -.014 -.627 -.022 .491 -.130 -.211 -.034 .129 -.028
L8.c. Participated in bridge project over the last 12 months -.189 .072 .241 .052 -.022 .050 .040 .043 -.468 .178 .596 .128 -.053 .124 .098 .108
L8.d. Participated in church project over the last 12 months -.108 .018 .350 .025 -.090 .008 .050 .041 -.246 .042 .800 .058 -.205 .018 .114 .095
L8.g. Participated in health centre project over the last 12 months -.053 .021 .188 .023 -.053 .008 .151 .046 -.153 .060 .539 .066 -.151 .023 .434 .133
L8.h. Participated in irrigation project over the last 12 months .026 -.009 .194 -.042 -.038 -.005 -.052 .003 .087 -.031 .638 -.138 -.127 -.016 -.172 .010
L8.i. Participated in borehole project over the last 12 months -.132 .011 .383 -.028 -.068 -.044 -.018 .019 -.285 .023 .828 -.061 -.146 -.094 -.039 .041
L8.k. Participated in graveyard clearing project over the last 12 months -.366 -.087 .047 .026 -.046 -.071 -.024 -.118 -.754 -.178 .096 .055 -.095 -.146 -.050 -.244
M1 Most people can be trusted (1) or you cannot be too careful (0) .134 .228 -.137 .169 .052 .152 -.024 .111 .266 .453 -.272 .335 .103 .302 -.048 .221
M2.d. Trust in Traditional Authorities .047 .072 .034 .361 -.012 -.110 .084 .070 .096 .147 .069 .735 -.024 -.225 .171 .142
M2.e. Trust in group village headmen .035 .123 -.024 .415 .003 .033 -.071 .072 .071 .245 -.049 .828 .007 .067 -.142 .143
M2.f. Trust in village headmen .043 .068 -.104 .366 -.018 .073 -.021 .141 .091 .142 -.218 .766 -.037 .154 -.045 .296
M2.j. Trust in police -.022 .226 -.105 .165 -.027 .094 -.021 .217 -.045 .460 -.213 .336 -.056 .192 -.044 .443
M2.l. Trust in teachers .024 .043 .096 .192 .009 -.035 .053 .379 .049 .086 .194 .386 .019 -.071 .107 .763
M2.m.Trust in school administrators .151 .138 .056 .104 .015 .023 .022 .355 .303 .276 .113 .209 .029 .046 .045 .712
M2.n. Trust in religious leaders -.043 .203 -.215 .180 .028 -.032 -.035 .139 -.094 .445 -.471 .393 .061 -.070 -.076 .303
M3.a. Trust in family members .013 .092 -.013 .093 .144 .057 -.062 -.036 .042 .301 -.043 .306 .475 .189 -.203 -.118
M3.b. Trust in relatives .096 .104 .005 .149 .137 .046 -.064 -.031 .259 .278 .013 .398 .367 .122 -.171 -.083
M3.c. Trust in people in own village .038 .338 .015 .112 .156 -.061 -.033 .029 .076 .674 .030 .223 .312 -.122 -.065 .058
M3.d. Trust in people outside the village .142 .341 -.012 .020 .041 -.086 -.033 .007 .307 .737 -.026 .043 .089 -.186 -.072 .015
M3.e. Trust in people of same ethnic group .048 .389 .063 .076 -.053 .089 .018 .054 .098 .791 .128 .154 -.108 .182 .036 .109
M3.f. Trust in people outside ethnic group .030 .362 -.018 .053 .001 -.054 .046 -.063 .068 .815 -.040 .120 .002 -.121 .104 -.141
M3.g. Trust in people from same church/ mosque -.007 .337 -.021 .051 -.040 .208 .074 .110 -.015 .670 -.042 .101 -.080 .414 .148 .218
M3.h. Trust in people not from same church/ mosque -.044 .381 .055 -.020 -.031 .028 .052 .103 -.093 .814 .117 -.044 -.066 .061 .110 .219
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 17 iterations.
Factor Analysis
Factor Analysis - Component Transformation Matrix - February 17, 2020
Component Transformation MatrixComponent Transformation Matrix, table, 1 levels of column headers and 1 levels of row headers, table with 9 columns and 11 rows
Component 1 2 3 4 5 6 7 8
1 .624 .360 -.401 .296 .345 .272 -.042 .195
2 -.265 .653 .347 .402 -.305 -.016 .122 .336
3 .212 -.045 .442 -.338 -.030 .666 .444 .045
4 -.295 .566 -.159 -.567 .436 -.113 .139 -.152
5 -.448 -.309 -.203 .364 .438 .097 .522 .234
6 .448 -.009 .141 -.020 -.025 -.646 .600 -.022
7 .080 -.123 .560 -.059 .556 -.195 -.366 .425
8 .007 .100 .351 .423 .309 .064 -.019 -.767
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Factor Analysis
Factor Analysis - Component Plot of Factors 1, 2, 3 - February 17, 2020
Component Plot of Factors 1, 2, 3 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 Component 1: 0.0867
Component 2: -0.0307
Component 3: 0.6377 Component 1: -0.2458
Component 2: 0.0419
Component 3: 0.8000 Component 1: -0.2852
Component 2: 0.0230
Component 3: 0.8276 Component 1: 0.8131
Component 2: 0.0445
Component 3: 0.0033 Component 1: 0.3003
Component 2: 0.0028
Component 3: 0.2783 Component 1: 0.7786
Component 2: 0.1422
Component 3: -0.1209 Component 1: -0.1535
Component 2: 0.0603
Component 3: 0.5388 Component 1: -0.0189
Component 2: 0.0571
Component 3: 0.4193 Component 1: 0.3029
Component 2: 0.2762
Component 3: 0.1128 Component 1: 0.5594
Component 2: 0.0277
Component 3: -0.0301 Component 1: 0.0982
Component 2: 0.7906
Component 3: 0.1276 Component 1: 0.3073
Component 2: 0.7369
Component 3: -0.0262 Component 1: -0.4681
Component 2: 0.1782
Component 3: 0.5957 Component 1: 0.2755
Component 2: 0.0601
Component 3: 0.0725 Component 1: 0.3620
Component 2: 0.0232
Component 3: 0.0149 Component 1: 0.2586
Component 2: 0.2785
Component 3: 0.0134 Component 1: 0.0492
Component 2: 0.0863
Component 3: 0.1939 Component 1: 0.0764
Component 2: 0.6739
Component 3: 0.0303 Component 1: -0.0933
Component 2: 0.8139
Component 3: 0.1165 Component 1: 0.5555
Component 2: -0.0991
Component 3: -0.1445 Component 1: 0.0677
Component 2: 0.8153
Component 3: -0.0398 Component 1: 0.0955
Component 2: 0.1471
Component 3: 0.0693 Component 1: -0.0146
Component 2: 0.6705
Component 3: -0.0418 Component 1: 0.0706
Component 2: 0.2452
Component 3: -0.0486 Component 1: -0.6494
Component 2: -0.1131
Component 3: 0.5325 Component 1: 0.0424
Component 2: 0.3014
Component 3: -0.0429 Component 1: -0.6275
Component 2: -0.0220
Component 3: 0.4910 Component 1: 0.2942
Component 2: 0.0322
Component 3: -0.1802 Component 1: 0.2659
Component 2: 0.4529
Component 3: -0.2724 Component 1: 0.2202
Component 2: 0.0143
Component 3: -0.1543 Component 1: -0.1736
Component 2: 0.1783
Component 3: 0.0546 Component 1: -0.6960
Component 2: -0.1955
Component 3: 0.4875 Component 1: 0.2189
Component 2: 0.0901
Component 3: -0.2349 Component 1: 0.2150
Component 2: -0.1246
Component 3: -0.2350 Component 1: -0.0217
Component 2: -0.0611
Component 3: -0.0920 Component 1: 0.0907
Component 2: 0.1424
Component 3: -0.2176 Component 1: 0.0210
Component 2: -0.1343
Component 3: -0.1246 Component 1: -0.1134
Component 2: 0.1207
Component 3: -0.0869 Component 1: -0.0446
Component 2: 0.4599
Component 3: -0.2135 Component 1: 0.1436
Component 2: -0.0525
Component 3: -0.2357 Component 1: -0.0936
Component 2: 0.4446
Component 3: -0.4710 Component 1: -0.7537
Component 2: -0.1784
Component 3: 0.0961

Log
Log - Log - February 17, 2020

FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3d L3e L3f L6 L7 L8a L8b L8c L8d
    L8g L8h L8i L8k M1trust M2dTradBIN M2eGVHBIN M2fVHBIN M2jPoliceBIN M2lTeachBIN M2mSchABIN
    M2nRelLeBIN M3aFamilBIN M3bRelatBIN M3cOwnVBIN M3dOutsVBIN M3eSaEthBIN M3fOutsEtBIN M3gSaChMBIN
    M3hNSaChMBIN
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3d L3e L3f L6 L7 L8a L8b L8c L8d
    L8g L8h L8i L8k M1trust M2dTradBIN M2eGVHBIN M2fVHBIN M2jPoliceBIN M2lTeachBIN M2mSchABIN
    M2nRelLeBIN M3aFamilBIN M3bRelatBIN M3cOwnVBIN M3dOutsVBIN M3eSaEthBIN M3fOutsEtBIN M3gSaChMBIN
    M3hNSaChMBIN
  /PRINT UNIVARIATE INITIAL EXTRACTION ROTATION
  /PLOT EIGEN ROTATION
  /CRITERIA FACTORS(7) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Descriptive Statistics - February 17, 2020
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 44 rows
  Mean Std. Deviation Analysis N
K1a Lending money to family members .59 .494 79
K1b Lending money to relatives .71 .457 79
K1c Lending money to people in your own village .57 .498 79
K1d Lending money to people outside the village .23 .422 79
K1e Lending money to people from the same mosque/ church .19 .395 79
K2a Lending tools like axes, hoes etc. to family members .77 .422 79
K2b Lending tools like axes, hoes etc. to relatives outside the household .85 .361 79
K2c Lending tools like axes, hoes etc. to people in your own village .73 .445 79
K2d Lending tools like axes, hoes etc. to people outside the village .20 .404 79
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .28 .451 79
L2 Participated in cooperative agricultural work .54 .501 79
L3.a. Participated last 12 months in cooperative work of preparing a garden .29 .457 79
L3.b. Participated last12 months in cooperative work of planting .10 .304 79
L3.d. Participated last 12 months in cooperative work of weeding .22 .414 79
L3.e. Participated last 12 months in cooperative work of harvesting .33 .473 79
L3.f. Participated last 12 months in cooperative work of other agriculture work .34 .477 79
L6 Participation in other exchange work than agriculture .65 .481 79
L7 Participated in public works without payment during the last year .53 .502 79
L8.a. Participated in school project over the last 12 months .49 .503 79
L8.b. Participated in road project over the last 12 months .43 .498 79
L8.c. Participated in bridge project over the last 12 months .20 .404 79
L8.d. Participated in church project over the last 12 months .25 .438 79
L8.g. Participated in health centre project over the last 12 months .14 .348 79
L8.h. Participated in irrigation project over the last 12 months .10 .304 79
L8.i. Participated in borehole project over the last 12 months .30 .463 79
L8.k. Participated in graveyard clearing project over the last 12 months .37 .485 79
M1 Most people can be trusted (1) or you cannot be too careful (0) .52 .503 79
M2.d. Trust in Traditional Authorities .61 .491 79
M2.e. Trust in group village headmen .54 .501 79
M2.f. Trust in village headmen .66 .477 79
M2.j. Trust in police .61 .491 79
M2.l. Trust in teachers .58 .496 79
M2.m.Trust in school administrators .57 .498 79
M2.n. Trust in religious leaders .71 .457 79
M3.a. Trust in family members .90 .304 79
M3.b. Trust in relatives .84 .373 79
M3.c. Trust in people in own village .54 .501 79
M3.d. Trust in people outside the village .30 .463 79
M3.e. Trust in people of same ethnic group .39 .491 79
M3.f. Trust in people outside ethnic group .27 .445 79
M3.g. Trust in people from same church/ mosque .51 .503 79
M3.h. Trust in people not from same church/ mosque .32 .468 79
Factor Analysis
Factor Analysis - Communalities - February 17, 2020
CommunalitiesCommunalities, table, 2 levels of column headers and 1 levels of row headers, table with 5 columns and 46 rows
  Raw Rescaled
Initial Extraction Initial Extraction
K1a Lending money to family members .244 .173 1.000 .709
K1b Lending money to relatives .209 .150 1.000 .720
K1c Lending money to people in your own village .248 .190 1.000 .766
K1d Lending money to people outside the village .178 .109 1.000 .609
K1e Lending money to people from the same mosque/ church .156 .091 1.000 .587
K2a Lending tools like axes, hoes etc. to family members .178 .117 1.000 .659
K2b Lending tools like axes, hoes etc. to relatives outside the household .130 .082 1.000 .627
K2c Lending tools like axes, hoes etc. to people in your own village .198 .139 1.000 .703
K2d Lending tools like axes, hoes etc. to people outside the village .164 .100 1.000 .613
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .204 .169 1.000 .829
L2 Participated in cooperative agricultural work .251 .199 1.000 .791
L3.a. Participated last 12 months in cooperative work of preparing a garden .209 .106 1.000 .509
L3.b. Participated last12 months in cooperative work of planting .092 .032 1.000 .348
L3.d. Participated last 12 months in cooperative work of weeding .171 .119 1.000 .693
L3.e. Participated last 12 months in cooperative work of harvesting .224 .146 1.000 .655
L3.f. Participated last 12 months in cooperative work of other agriculture work .228 .154 1.000 .675
L6 Participation in other exchange work than agriculture .232 .102 1.000 .439
L7 Participated in public works without payment during the last year .252 .228 1.000 .902
L8.a. Participated in school project over the last 12 months .253 .218 1.000 .860
L8.b. Participated in road project over the last 12 months .248 .177 1.000 .712
L8.c. Participated in bridge project over the last 12 months .164 .103 1.000 .627
L8.d. Participated in church project over the last 12 months .191 .142 1.000 .741
L8.g. Participated in health centre project over the last 12 months .121 .066 1.000 .547
L8.h. Participated in irrigation project over the last 12 months .092 .043 1.000 .466
L8.i. Participated in borehole project over the last 12 months .214 .165 1.000 .770
L8.k. Participated in graveyard clearing project over the last 12 months .235 .158 1.000 .671
M1 Most people can be trusted (1) or you cannot be too careful (0) .253 .155 1.000 .615
M2.d. Trust in Traditional Authorities .241 .152 1.000 .630
M2.e. Trust in group village headmen .251 .184 1.000 .732
M2.f. Trust in village headmen .228 .177 1.000 .777
M2.j. Trust in police .241 .134 1.000 .556
M2.l. Trust in teachers .246 .166 1.000 .675
M2.m.Trust in school administrators .248 .147 1.000 .594
M2.n. Trust in religious leaders .209 .138 1.000 .660
M3.a. Trust in family members .092 .032 1.000 .346
M3.b. Trust in relatives .139 .047 1.000 .336
M3.c. Trust in people in own village .251 .146 1.000 .583
M3.d. Trust in people outside the village .214 .146 1.000 .680
M3.e. Trust in people of same ethnic group .241 .175 1.000 .726
M3.f. Trust in people outside ethnic group .198 .135 1.000 .683
M3.g. Trust in people from same church/ mosque .253 .178 1.000 .703
M3.h. Trust in people not from same church/ mosque .219 .164 1.000 .748
Extraction Method: Principal Component Analysis.
Factor Analysis
Factor Analysis - Total Variance Explained - February 17, 2020
Total Variance ExplainedTotal Variance Explained, table, 2 levels of column headers and 2 levels of row headers, table with 11 columns and 89 rows
  Component Initial Eigenvaluesa Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 2.129 24.718 24.718 2.129 24.718 24.718 1.203 13.969 13.969
2 1.268 14.717 39.435 1.268 14.717 39.435 1.016 11.791 25.760
3 .676 7.844 47.279 .676 7.844 47.279 .939 10.897 36.658
4 .515 5.974 53.253 .515 5.974 53.253 .767 8.905 45.563
5 .437 5.076 58.329 .437 5.076 58.329 .702 8.145 53.708
6 .395 4.590 62.918 .395 4.590 62.918 .646 7.499 61.207
7 .335 3.885 66.803 .335 3.885 66.803 .482 5.596 66.803
8 .286 3.323 70.126            
9 .227 2.636 72.762            
10 .201 2.333 75.095            
11 .185 2.148 77.242            
12 .167 1.934 79.176            
13 .160 1.856 81.032            
14 .143 1.660 82.693            
15 .138 1.597 84.289            
16 .131 1.526 85.815            
17 .111 1.285 87.101            
18 .107 1.238 88.338            
19 .100 1.165 89.503            
20 .092 1.072 90.576            
21 .088 1.019 91.595            
22 .073 .846 92.440            
23 .073 .842 93.282            
24 .068 .792 94.074            
25 .060 .696 94.770            
26 .055 .633 95.403            
27 .050 .584 95.987            
28 .048 .553 96.540            
29 .042 .491 97.031            
30 .037 .424 97.455            
31 .034 .394 97.850            
32 .030 .345 98.195            
33 .029 .341 98.535            
34 .024 .279 98.815            
35 .023 .268 99.083            
36 .021 .241 99.324            
37 .015 .174 99.498            
38 .013 .145 99.643            
39 .011 .133 99.776            
40 .009 .100 99.877            
41 .007 .079 99.956            
42 .004 .044 100.000            
Rescaled 1 2.129 24.718 24.718 9.548 22.734 22.734 5.304 12.629 12.629
2 1.268 14.717 39.435 5.762 13.719 36.453 4.527 10.779 23.408
3 .676 7.844 47.279 3.556 8.468 44.921 4.095 9.749 33.157
4 .515 5.974 53.253 2.394 5.699 50.620 3.951 9.407 42.564
5 .437 5.076 58.329 2.268 5.400 56.021 3.372 8.029 50.592
6 .395 4.590 62.918 2.069 4.926 60.947 3.292 7.837 58.429
7 .335 3.885 66.803 1.674 3.985 64.933 2.731 6.503 64.933
8 .286 3.323 70.126            
9 .227 2.636 72.762            
10 .201 2.333 75.095            
11 .185 2.148 77.242            
12 .167 1.934 79.176            
13 .160 1.856 81.032            
14 .143 1.660 82.693            
15 .138 1.597 84.289            
16 .131 1.526 85.815            
17 .111 1.285 87.101            
18 .107 1.238 88.338            
19 .100 1.165 89.503            
20 .092 1.072 90.576            
21 .088 1.019 91.595            
22 .073 .846 92.440            
23 .073 .842 93.282            
24 .068 .792 94.074            
25 .060 .696 94.770            
26 .055 .633 95.403            
27 .050 .584 95.987            
28 .048 .553 96.540            
29 .042 .491 97.031            
30 .037 .424 97.455            
31 .034 .394 97.850            
32 .030 .345 98.195            
33 .029 .341 98.535            
34 .024 .279 98.815            
35 .023 .268 99.083            
36 .021 .241 99.324            
37 .015 .174 99.498            
38 .013 .145 99.643            
39 .011 .133 99.776            
40 .009 .100 99.877            
41 .007 .079 99.956            
42 .004 .044 100.000            
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.
Factor Analysis
Factor Analysis - Scree Plot - February 17, 2020
Scree Plot Component Number: 42
Eigenvalue: 0.0038 Component Number: 41
Eigenvalue: 0.0068 Component Number: 40
Eigenvalue: 0.0086 Component Number: 39
Eigenvalue: 0.0115 Component Number: 38
Eigenvalue: 0.0125 Component Number: 37
Eigenvalue: 0.0150 Component Number: 36
Eigenvalue: 0.0207 Component Number: 35
Eigenvalue: 0.0231 Component Number: 34
Eigenvalue: 0.0241 Component Number: 33
Eigenvalue: 0.0294 Component Number: 32
Eigenvalue: 0.0297 Component Number: 31
Eigenvalue: 0.0340 Component Number: 30
Eigenvalue: 0.0365 Component Number: 29
Eigenvalue: 0.0423 Component Number: 28
Eigenvalue: 0.0477 Component Number: 27
Eigenvalue: 0.0503 Component Number: 26
Eigenvalue: 0.0545 Component Number: 25
Eigenvalue: 0.0600 Component Number: 24
Eigenvalue: 0.0682 Component Number: 23
Eigenvalue: 0.0725 Component Number: 22
Eigenvalue: 0.0728 Component Number: 21
Eigenvalue: 0.0878 Component Number: 20
Eigenvalue: 0.0924 Component Number: 19
Eigenvalue: 0.1003 Component Number: 18
Eigenvalue: 0.1066 Component Number: 17
Eigenvalue: 0.1107 Component Number: 16
Eigenvalue: 0.1315 Component Number: 15
Eigenvalue: 0.1375 Component Number: 14
Eigenvalue: 0.1430 Component Number: 13
Eigenvalue: 0.1599 Component Number: 12
Eigenvalue: 0.1666 Component Number: 11
Eigenvalue: 0.1850 Component Number: 10
Eigenvalue: 0.2010 Component Number: 9
Eigenvalue: 0.2270 Component Number: 8
Eigenvalue: 0.2862 Component Number: 7
Eigenvalue: 0.3347 Component Number: 6
Eigenvalue: 0.3953 Component Number: 5
Eigenvalue: 0.4372 Component Number: 4
Eigenvalue: 0.5146 Component Number: 3
Eigenvalue: 0.6757 Component Number: 2
Eigenvalue: 1.2678 Component Number: 1
Eigenvalue: 2.1292 Component Number: 41
Eigenvalue: 0.0068 Component Number: 40
Eigenvalue: 0.0086 Component Number: 39
Eigenvalue: 0.0115 Component Number: 38
Eigenvalue: 0.0125 Component Number: 37
Eigenvalue: 0.0150 Component Number: 36
Eigenvalue: 0.0207 Component Number: 35
Eigenvalue: 0.0231 Component Number: 34
Eigenvalue: 0.0241 Component Number: 33
Eigenvalue: 0.0294 Component Number: 32
Eigenvalue: 0.0297 Component Number: 31
Eigenvalue: 0.0340 Component Number: 30
Eigenvalue: 0.0365 Component Number: 29
Eigenvalue: 0.0423 Component Number: 28
Eigenvalue: 0.0477 Component Number: 27
Eigenvalue: 0.0503 Component Number: 26
Eigenvalue: 0.0545 Component Number: 25
Eigenvalue: 0.0600 Component Number: 24
Eigenvalue: 0.0682 Component Number: 23
Eigenvalue: 0.0725 Component Number: 22
Eigenvalue: 0.0728 Component Number: 21
Eigenvalue: 0.0878 Component Number: 20
Eigenvalue: 0.0924 Component Number: 19
Eigenvalue: 0.1003 Component Number: 18
Eigenvalue: 0.1066 Component Number: 17
Eigenvalue: 0.1107 Component Number: 16
Eigenvalue: 0.1315 Component Number: 15
Eigenvalue: 0.1375 Component Number: 14
Eigenvalue: 0.1430 Component Number: 13
Eigenvalue: 0.1599 Component Number: 12
Eigenvalue: 0.1666 Component Number: 11
Eigenvalue: 0.1850 Component Number: 10
Eigenvalue: 0.2010 Component Number: 9
Eigenvalue: 0.2270 Component Number: 8
Eigenvalue: 0.2862 Component Number: 7
Eigenvalue: 0.3347 Component Number: 6
Eigenvalue: 0.3953 Component Number: 5
Eigenvalue: 0.4372 Component Number: 4
Eigenvalue: 0.5146 Component Number: 3
Eigenvalue: 0.6757 Component Number: 2
Eigenvalue: 1.2678 Component Number: 1
Eigenvalue: 2.1292 0.0 0.5 1.0 1.5 2.0 2.5 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.003811034910513529,"max":2.129201073743022,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,2.129201073743022],[1,1.267759028890319],[2,0.6756927609942726],[3,0.5146040562882145],[4,0.4372197527833368],[5,0.3953447057132984],[6,0.3346506899251034],[7,0.2862485640988612],[8,0.2270367582334641],[9,0.2009531390085752],[10,0.1850122705186145],[11,0.1665891404811874],[12,0.1598911211268763],[13,0.1430190966953667],[14,0.1375280686058958],[15,0.1314520969279299],[16,0.1107165314582841],[17,0.1066318136043668],[18,0.1003431292237114],[19,0.09237377140142342],[20,0.08776311836076917],[21,0.07283713193109544],[22,0.07252468316261708],[23,0.06822034829648929],[24,0.0599670132675816],[25,0.05453898159717519],[26,0.05026379121950589],[27,0.04767209186653266],[28,0.04228702268990851],[29,0.03654258941834906],[30,0.03395827139397963],[31,0.02973489246748427],[32,0.02935002338214026],[33,0.02405448163316533],[34,0.02309339174400565],[35,0.02074189957135905],[36,0.01499602073666641],[37,0.0125320356218092],[38,0.01147767710240499],[39,0.008640931113229647],[40,0.006811334396415845],[41,0.003811034910513529]]}],"size":{"width":851.0,"height":501.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis
Factor Analysis - Component Matrix - February 17, 2020
Component MatrixaComponent Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 15 columns and 48 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 1 2 3 4 5 6 7
K1a Lending money to family members .207 -.204 -.096 .156 .165 .032 .164 .418 -.413 -.195 .316 .334 .065 .332
K1b Lending money to relatives .238 -.209 .061 .081 .144 -.088 .107 .520 -.457 .134 .176 .315 -.192 .233
K1c Lending money to people in your own village .280 -.143 .129 .125 .138 -.101 .172 .562 -.288 .260 .250 .277 -.203 .345
K1d Lending money to people outside the village .091 -.039 .191 .132 .056 -.204 .013 .215 -.092 .451 .312 .134 -.484 .032
K1e Lending money to people from the same mosque/ church .105 -.003 .166 -.085 .165 -.080 -.110 .265 -.009 .420 -.216 .417 -.203 -.280
K2a Lending tools like axes, hoes etc. to family members .176 -.110 .000 .175 .139 .138 .075 .416 -.260 -.001 .414 .330 .326 .178
K2b Lending tools like axes, hoes etc. to relatives outside the household .126 -.060 .092 .098 .123 .171 .004 .348 -.166 .255 .272 .341 .473 .012
K2c Lending tools like axes, hoes etc. to people in your own village -.015 -.065 .185 .137 .192 .177 -.115 -.034 -.146 .415 .309 .433 .399 -.258
K2d Lending tools like axes, hoes etc. to people outside the village -.006 .151 .157 .034 .168 .080 -.130 -.014 .374 .387 .084 .416 .198 -.321
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church -.122 .181 .217 -.052 .088 .227 -.110 -.270 .402 .481 -.115 .194 .503 -.243
L2 Participated in cooperative agricultural work .336 -.089 .193 -.131 -.132 .076 .015 .670 -.179 .386 -.261 -.264 .151 .030
L3.a. Participated last 12 months in cooperative work of preparing a garden .216 -.031 .188 -.102 -.006 -.107 -.039 .473 -.068 .411 -.222 -.012 -.234 -.085
L3.b. Participated last12 months in cooperative work of planting .032 -.031 .136 -.026 -.094 -.040 .027 .105 -.101 .446 -.085 -.309 -.131 .090
L3.d. Participated last 12 months in cooperative work of weeding .149 .001 .270 -.062 -.010 -.119 -.073 .359 .003 .654 -.149 -.025 -.287 -.178
L3.e. Participated last 12 months in cooperative work of harvesting .262 -.074 .228 -.069 -.093 -.071 .040 .554 -.157 .483 -.146 -.197 -.150 .085
L3.f. Participated last 12 months in cooperative work of other agriculture work .318 -.066 .017 -.066 -.140 .148 .050 .665 -.138 .036 -.139 -.292 .310 .105
L6 Participation in other exchange work than agriculture .239 -.138 .039 -.114 -.005 .090 -.053 .497 -.286 .082 -.238 -.010 .187 -.109
L7 Participated in public works without payment during the last year -.454 .127 .026 -.006 .042 -.052 .024 -.903 .252 .052 -.011 .085 -.104 .048
L8.a. Participated in school project over the last 12 months -.432 .133 .071 .055 .035 -.021 .057 -.859 .265 .140 .110 .069 -.042 .114
L8.b. Participated in road project over the last 12 months -.363 .170 .084 .051 .053 -.052 .033 -.728 .342 .169 .103 .105 -.104 .066
L8.c. Participated in bridge project over the last 12 months -.161 .227 .099 .013 .059 -.061 .090 -.397 .561 .245 .032 .145 -.152 .223
L8.d. Participated in church project over the last 12 months -.216 .220 .155 -.067 -.022 .027 .132 -.494 .502 .353 -.153 -.050 .061 .301
L8.g. Participated in health centre project over the last 12 months -.108 .152 .139 -.025 .055 .088 .030 -.309 .438 .399 -.072 .159 .252 .087
L8.h. Participated in irrigation project over the last 12 months -.089 .044 .081 -.044 -.107 .013 .114 -.292 .144 .266 -.145 -.354 .041 .376
L8.i. Participated in borehole project over the last 12 months -.271 .189 .116 -.030 -.071 .014 .190 -.586 .409 .251 -.064 -.154 .030 .411
L8.k. Participated in graveyard clearing project over the last 12 months -.327 .040 -.124 .039 .123 -.122 -.047 -.675 .082 -.255 .080 .254 -.252 -.097
M1 Most people can be trusted (1) or you cannot be too careful (0) .352 .150 -.005 .001 .010 -.081 -.049 .700 .297 -.011 .002 .020 -.161 -.098
M2.d. Trust in Traditional Authorities .124 .231 -.133 -.175 .125 .138 .006 .253 .470 -.271 -.356 .255 .282 .013
M2.e. Trust in group village headmen .226 .243 -.155 -.196 .087 -.063 .001 .451 .485 -.309 -.390 .173 -.125 .002
M2.f. Trust in village headmen .244 .193 -.117 -.206 .135 -.066 -.041 .511 .404 -.245 -.431 .284 -.138 -.086
M2.j. Trust in police .218 .261 -.053 -.001 .058 -.108 -.031 .444 .530 -.109 -.003 .119 -.219 -.064
M2.l. Trust in teachers .114 .263 -.002 -.149 .143 .066 .193 .230 .530 -.004 -.300 .288 .133 .388
M2.m.Trust in school administrators .231 .228 .056 -.082 .020 .062 .166 .465 .458 .113 -.164 .039 .125 .334
M2.n. Trust in religious leaders .216 .176 -.206 .050 .089 -.059 -.066 .471 .385 -.450 .109 .195 -.129 -.145
M3.a. Trust in family members .135 .025 -.034 .051 .031 -.076 .053 .444 .081 -.111 .167 .101 -.249 .175
M3.b. Trust in relatives .196 .043 -.036 -.004 .002 -.030 .066 .525 .116 -.095 -.012 .005 -.081 .177
M3.c. Trust in people in own village .217 .220 -.097 .180 -.032 .029 .086 .433 .438 -.193 .360 -.063 .058 .172
M3.d. Trust in people outside the village .216 .176 -.071 .164 -.166 .093 .016 .466 .380 -.152 .353 -.358 .201 .035
M3.e. Trust in people of same ethnic group .183 .328 .066 .114 -.120 -.022 -.044 .373 .668 .134 .232 -.243 -.044 -.090
M3.f. Trust in people outside ethnic group .144 .229 -.054 .191 -.098 .070 -.088 .323 .515 -.121 .430 -.221 .158 -.198
M3.g. Trust in people from same church/ mosque .201 .290 .135 .120 -.011 -.102 -.100 .400 .577 .267 .239 -.022 -.202 -.200
M3.h. Trust in people not from same church/ mosque .097 .321 .052 .206 -.077 -.004 -.017 .207 .686 .110 .441 -.163 -.008 -.036
Extraction Method: Principal Component Analysis.
a. 7 components extracted.
Factor Analysis
Factor Analysis - Rotated Component Matrix - February 17, 2020
Rotated Component MatrixaRotated Component Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 15 columns and 48 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 1 2 3 4 5 6 7
K1a Lending money to family members .078 -.031 .005 -.134 .379 -.060 -.028 .157 -.064 .011 -.272 .767 -.122 -.057
K1b Lending money to relatives .104 -.060 -.001 -.115 .316 .149 -.027 .227 -.131 -.002 -.251 .692 .326 -.060
K1c Lending money to people in your own village .115 .016 .010 -.037 .369 .197 -.020 .230 .032 .020 -.074 .740 .395 -.040
K1d Lending money to people outside the village -.048 .061 -.076 -.010 .145 .275 -.008 -.115 .144 -.180 -.023 .344 .651 -.018
K1e Lending money to people from the same mosque/ church .013 -.061 .098 -.064 .014 .234 .137 .032 -.154 .249 -.163 .036 .592 .348
K2a Lending tools like axes, hoes etc. to family members .097 .043 -.024 -.087 .284 -.062 .117 .230 .102 -.058 -.206 .672 -.147 .277
K2b Lending tools like axes, hoes etc. to relatives outside the household .110 .022 -.021 -.037 .167 -.016 .199 .303 .060 -.058 -.102 .461 -.044 .551
K2c Lending tools like axes, hoes etc. to people in your own village -.009 -.021 -.108 -.046 .100 .028 .337 -.020 -.047 -.244 -.103 .225 .063 .759
K2d Lending tools like axes, hoes etc. to people outside the village -.069 .070 .065 .019 -.027 .083 .280 -.170 .172 .161 .047 -.067 .206 .692
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church -.012 .018 .023 .160 -.145 -.004 .348 -.027 .039 .050 .354 -.322 -.009 .771
L2 Participated in cooperative agricultural work .408 .020 .029 .002 .030 .172 .013 .815 .040 .058 .004 .060 .343 .025
L3.a. Participated last 12 months in cooperative work of preparing a garden .167 -.002 .062 -.025 .016 .271 .005 .365 -.005 .136 -.055 .036 .594 .011
L3.b. Participated last12 months in cooperative work of planting .087 -.001 -.067 .073 -.018 .116 -.029 .287 -.002 -.221 .240 -.060 .383 -.096
L3.d. Participated last 12 months in cooperative work of weeding .113 .020 .002 .018 -.020 .318 .060 .273 .050 .005 .043 -.049 .769 .144
L3.e. Participated last 12 months in cooperative work of harvesting .265 .024 -.005 .030 .065 .264 -.035 .560 .050 -.011 .062 .137 .557 -.074
L3.f. Participated last 12 months in cooperative work of other agriculture work .374 .071 .049 -.038 .062 -.013 -.030 .784 .148 .103 -.079 .129 -.026 -.063
L6 Participation in other exchange work than agriculture .271 -.064 .054 -.122 .037 .054 .042 .564 -.133 .112 -.254 .077 .113 .087
L7 Participated in public works without payment during the last year -.358 -.102 -.084 .220 -.165 -.071 .039 -.713 -.203 -.168 .437 -.328 -.142 .077
L8.a. Participated in school project over the last 12 months -.336 -.057 -.121 .253 -.115 -.069 .067 -.669 -.113 -.240 .504 -.228 -.137 .133
L8.b. Participated in road project over the last 12 months -.321 -.014 -.070 .226 -.108 -.015 .074 -.644 -.028 -.141 .454 -.217 -.031 .148
L8.c. Participated in bridge project over the last 12 months -.194 .063 .060 .227 -.034 .048 .049 -.479 .155 .148 .562 -.085 .119 .120
L8.d. Participated in church project over the last 12 months -.116 .010 .025 .336 -.105 .008 .063 -.264 .023 .057 .768 -.239 .018 .144
L8.g. Participated in health centre project over the last 12 months -.057 .018 .032 .185 -.051 .008 .158 -.163 .051 .092 .531 -.145 .022 .454
L8.h. Participated in irrigation project over the last 12 months .020 -.011 -.047 .189 -.048 -.003 -.047 .066 -.036 -.155 .622 -.159 -.009 -.154
L8.i. Participated in borehole project over the last 12 months -.142 .004 -.034 .366 -.087 -.043 -.006 -.308 .008 -.074 .792 -.187 -.092 -.014
L8.k. Participated in graveyard clearing project over the last 12 months -.367 -.099 -.028 -.005 -.077 -.077 -.019 -.758 -.203 -.058 -.010 -.159 -.159 -.039
M1 Most people can be trusted (1) or you cannot be too careful (0) .141 .224 .214 -.112 .058 .151 -.026 .281 .446 .426 -.223 .116 .299 -.052
M2.d. Trust in Traditional Authorities .055 .050 .348 .013 -.046 -.123 .090 .112 .102 .708 .026 -.094 -.250 .183
M2.e. Trust in group village headmen .045 .097 .405 -.048 -.041 .020 -.064 .090 .193 .808 -.095 -.082 .040 -.128
M2.f. Trust in village headmen .055 .053 .397 -.092 -.026 .066 -.018 .116 .111 .831 -.193 -.055 .138 -.037
M2.j. Trust in police -.014 .230 .262 -.045 .011 .099 -.022 -.029 .468 .534 -.092 .022 .202 -.044
M2.l. Trust in teachers .032 .052 .339 .196 .073 -.026 .053 .064 .105 .684 .395 .148 -.051 .107
M2.m.Trust in school administrators .156 .153 .254 .163 .083 .036 .020 .313 .306 .510 .327 .167 .072 .040
M2.n. Trust in religious leaders -.033 .204 .243 -.176 .050 -.031 -.040 -.071 .446 .532 -.385 .110 -.068 -.088
M3.a. Trust in family members .015 .079 .070 -.040 .111 .050 -.064 .050 .262 .231 -.133 .365 .164 -.210
M3.b. Trust in relatives .100 .088 .119 -.026 .094 .036 -.064 .267 .236 .318 -.071 .253 .097 -.172
M3.c. Trust in people in own village .040 .328 .121 .006 .131 -.066 -.036 .080 .654 .241 .012 .261 -.132 -.072
M3.d. Trust in people outside the village .141 .339 .028 -.010 .030 -.086 -.036 .305 .733 .060 -.022 .065 -.186 -.078
M3.e. Trust in people of same ethnic group .046 .383 .101 .065 -.060 .090 .023 .094 .779 .205 .133 -.122 .182 .047
M3.f. Trust in people outside ethnic group .029 .353 .028 -.047 -.027 -.059 .047 .065 .795 .064 -.105 -.061 -.132 .106
M3.g. Trust in people from same church/ mosque -.006 .339 .110 .006 -.019 .212 .077 -.013 .673 .219 .011 -.037 .421 .153
M3.h. Trust in people not from same church/ mosque -.046 .386 .040 .084 -.009 .034 .053 -.099 .824 .086 .180 -.019 .074 .113
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 10 iterations.
Factor Analysis
Factor Analysis - Component Transformation Matrix - February 17, 2020
Component Transformation MatrixComponent Transformation Matrix, table, 1 levels of column headers and 1 levels of row headers, table with 8 columns and 10 rows
Component 1 2 3 4 5 6 7
1 .643 .358 .373 -.345 .354 .267 -.060
2 -.266 .636 .518 .387 -.293 -.014 .146
3 .196 -.032 -.304 .453 .009 .675 .456
4 -.304 .593 -.539 -.155 .467 -.103 .111
5 -.423 -.321 .441 -.184 .474 .081 .508
6 .447 -.003 -.063 .136 -.018 -.651 .594
7 .075 -.111 .109 .670 .588 -.180 -.379
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Factor Analysis
Factor Analysis - Component Plot of Factors 1, 2, 3 - February 17, 2020
Component Plot of Factors 1, 2, 3 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 Component 1: 0.1157
Component 2: 0.1108
Component 3: 0.8310 Component 1: 0.0903
Component 2: 0.1927
Component 3: 0.8078 Component 1: 0.1121
Component 2: 0.1025
Component 3: 0.7080 Component 1: 0.3132
Component 2: 0.3065
Component 3: 0.5099 Component 1: 0.0638
Component 2: 0.1054
Component 3: 0.6840 Component 1: 0.2808
Component 2: 0.4459
Component 3: 0.4261 Component 1: 0.7842
Component 2: 0.1479
Component 3: 0.1034 Component 1: 0.8147
Component 2: 0.0396
Component 3: 0.0582 Component 1: -0.0292
Component 2: 0.4677
Component 3: 0.5339 Component 1: -0.0712
Component 2: 0.4461
Component 3: 0.5317 Component 1: 0.2668
Component 2: 0.2363
Component 3: 0.3177 Component 1: 0.5638
Component 2: -0.1329
Component 3: 0.1124 Component 1: 0.0944
Component 2: 0.7791
Component 3: 0.2047 Component 1: 0.0802
Component 2: 0.6537
Component 3: 0.2406 Component 1: 0.3053
Component 2: 0.7332
Component 3: 0.0601 Component 1: 0.5597
Component 2: 0.0501
Component 3: -0.0107 Component 1: 0.3650
Component 2: -0.0050
Component 3: 0.1361 Component 1: -0.0127
Component 2: 0.6733
Component 3: 0.2193 Component 1: 0.0503
Component 2: 0.2617
Component 3: 0.2308 Component 1: 0.0652
Component 2: 0.7946
Component 3: 0.0638 Component 1: 0.0324
Component 2: -0.1544
Component 3: 0.2492 Component 1: 0.2728
Component 2: 0.0495
Component 3: 0.0048 Component 1: -0.0990
Component 2: 0.8245
Component 3: 0.0858 Component 1: 0.2305
Component 2: 0.0317
Component 3: 0.0197 Component 1: 0.3032
Component 2: 0.0600
Component 3: -0.0584 Component 1: 0.2273
Component 2: -0.1307
Component 3: -0.0019 Component 1: 0.2300
Component 2: 0.1024
Component 3: -0.0576 Component 1: 0.1572
Component 2: -0.0637
Component 3: 0.0105 Component 1: -0.1698
Component 2: 0.1721
Component 3: 0.1612 Component 1: -0.0272
Component 2: 0.0389
Component 3: 0.0501 Component 1: -0.1631
Component 2: 0.0510
Component 3: 0.0921 Component 1: 0.2868
Component 2: -0.0024
Component 3: -0.2208 Component 1: 0.0663
Component 2: -0.0356
Component 3: -0.1549 Component 1: -0.2643
Component 2: 0.0226
Component 3: 0.0571 Component 1: -0.4792
Component 2: 0.1554
Component 3: 0.1483 Component 1: -0.1148
Component 2: 0.1439
Component 3: -0.1797 Component 1: -0.0204
Component 2: -0.0466
Component 3: -0.2437 Component 1: -0.3077
Component 2: 0.0078
Component 3: -0.0735 Component 1: -0.6437
Component 2: -0.0283
Component 3: -0.1413 Component 1: -0.7576
Component 2: -0.2033
Component 3: -0.0578 Component 1: -0.7129
Component 2: -0.2033
Component 3: -0.1676 Component 1: -0.6686
Component 2: -0.1125
Component 3: -0.2400

Log
Log - Log - February 17, 2020

FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3d L3e L3f L6 L7 L8a L8b L8c L8d
    L8g L8h L8i L8k M1trust M2dTradBIN M2eGVHBIN M2fVHBIN M2jPoliceBIN M2lTeachBIN M2mSchABIN
    M2nRelLeBIN M3aFamilBIN M3bRelatBIN M3cOwnVBIN M3dOutsVBIN M3eSaEthBIN M3fOutsEtBIN M3gSaChMBIN
    M3hNSaChMBIN
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3d L3e L3f L6 L7 L8a L8b L8c L8d
    L8g L8h L8i L8k M1trust M2dTradBIN M2eGVHBIN M2fVHBIN M2jPoliceBIN M2lTeachBIN M2mSchABIN
    M2nRelLeBIN M3aFamilBIN M3bRelatBIN M3cOwnVBIN M3dOutsVBIN M3eSaEthBIN M3fOutsEtBIN M3gSaChMBIN
    M3hNSaChMBIN
  /PRINT UNIVARIATE INITIAL EXTRACTION ROTATION
  /PLOT EIGEN ROTATION
  /CRITERIA FACTORS(6) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Descriptive Statistics - February 17, 2020
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 44 rows
  Mean Std. Deviation Analysis N
K1a Lending money to family members .59 .494 79
K1b Lending money to relatives .71 .457 79
K1c Lending money to people in your own village .57 .498 79
K1d Lending money to people outside the village .23 .422 79
K1e Lending money to people from the same mosque/ church .19 .395 79
K2a Lending tools like axes, hoes etc. to family members .77 .422 79
K2b Lending tools like axes, hoes etc. to relatives outside the household .85 .361 79
K2c Lending tools like axes, hoes etc. to people in your own village .73 .445 79
K2d Lending tools like axes, hoes etc. to people outside the village .20 .404 79
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .28 .451 79
L2 Participated in cooperative agricultural work .54 .501 79
L3.a. Participated last 12 months in cooperative work of preparing a garden .29 .457 79
L3.b. Participated last12 months in cooperative work of planting .10 .304 79
L3.d. Participated last 12 months in cooperative work of weeding .22 .414 79
L3.e. Participated last 12 months in cooperative work of harvesting .33 .473 79
L3.f. Participated last 12 months in cooperative work of other agriculture work .34 .477 79
L6 Participation in other exchange work than agriculture .65 .481 79
L7 Participated in public works without payment during the last year .53 .502 79
L8.a. Participated in school project over the last 12 months .49 .503 79
L8.b. Participated in road project over the last 12 months .43 .498 79
L8.c. Participated in bridge project over the last 12 months .20 .404 79
L8.d. Participated in church project over the last 12 months .25 .438 79
L8.g. Participated in health centre project over the last 12 months .14 .348 79
L8.h. Participated in irrigation project over the last 12 months .10 .304 79
L8.i. Participated in borehole project over the last 12 months .30 .463 79
L8.k. Participated in graveyard clearing project over the last 12 months .37 .485 79
M1 Most people can be trusted (1) or you cannot be too careful (0) .52 .503 79
M2.d. Trust in Traditional Authorities .61 .491 79
M2.e. Trust in group village headmen .54 .501 79
M2.f. Trust in village headmen .66 .477 79
M2.j. Trust in police .61 .491 79
M2.l. Trust in teachers .58 .496 79
M2.m.Trust in school administrators .57 .498 79
M2.n. Trust in religious leaders .71 .457 79
M3.a. Trust in family members .90 .304 79
M3.b. Trust in relatives .84 .373 79
M3.c. Trust in people in own village .54 .501 79
M3.d. Trust in people outside the village .30 .463 79
M3.e. Trust in people of same ethnic group .39 .491 79
M3.f. Trust in people outside ethnic group .27 .445 79
M3.g. Trust in people from same church/ mosque .51 .503 79
M3.h. Trust in people not from same church/ mosque .32 .468 79
Factor Analysis
Factor Analysis - Communalities - February 17, 2020
CommunalitiesCommunalities, table, 2 levels of column headers and 1 levels of row headers, table with 5 columns and 46 rows
  Raw Rescaled
Initial Extraction Initial Extraction
K1a Lending money to family members .244 .146 1.000 .599
K1b Lending money to relatives .209 .139 1.000 .665
K1c Lending money to people in your own village .248 .161 1.000 .647
K1d Lending money to people outside the village .178 .108 1.000 .608
K1e Lending money to people from the same mosque/ church .156 .079 1.000 .508
K2a Lending tools like axes, hoes etc. to family members .178 .112 1.000 .627
K2b Lending tools like axes, hoes etc. to relatives outside the household .130 .082 1.000 .627
K2c Lending tools like axes, hoes etc. to people in your own village .198 .126 1.000 .637
K2d Lending tools like axes, hoes etc. to people outside the village .164 .083 1.000 .510
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .204 .157 1.000 .770
L2 Participated in cooperative agricultural work .251 .198 1.000 .790
L3.a. Participated last 12 months in cooperative work of preparing a garden .209 .105 1.000 .502
L3.b. Participated last12 months in cooperative work of planting .092 .031 1.000 .340
L3.d. Participated last 12 months in cooperative work of weeding .171 .113 1.000 .662
L3.e. Participated last 12 months in cooperative work of harvesting .224 .145 1.000 .647
L3.f. Participated last 12 months in cooperative work of other agriculture work .228 .151 1.000 .664
L6 Participation in other exchange work than agriculture .232 .099 1.000 .427
L7 Participated in public works without payment during the last year .252 .227 1.000 .900
L8.a. Participated in school project over the last 12 months .253 .214 1.000 .847
L8.b. Participated in road project over the last 12 months .248 .176 1.000 .707
L8.c. Participated in bridge project over the last 12 months .164 .095 1.000 .578
L8.d. Participated in church project over the last 12 months .191 .125 1.000 .651
L8.g. Participated in health centre project over the last 12 months .121 .066 1.000 .540
L8.h. Participated in irrigation project over the last 12 months .092 .030 1.000 .325
L8.i. Participated in borehole project over the last 12 months .214 .129 1.000 .602
L8.k. Participated in graveyard clearing project over the last 12 months .235 .156 1.000 .662
M1 Most people can be trusted (1) or you cannot be too careful (0) .253 .153 1.000 .605
M2.d. Trust in Traditional Authorities .241 .152 1.000 .630
M2.e. Trust in group village headmen .251 .184 1.000 .732
M2.f. Trust in village headmen .228 .175 1.000 .770
M2.j. Trust in police .241 .133 1.000 .552
M2.l. Trust in teachers .246 .129 1.000 .525
M2.m.Trust in school administrators .248 .120 1.000 .482
M2.n. Trust in religious leaders .209 .134 1.000 .639
M3.a. Trust in family members .092 .029 1.000 .316
M3.b. Trust in relatives .139 .042 1.000 .305
M3.c. Trust in people in own village .251 .139 1.000 .553
M3.d. Trust in people outside the village .214 .145 1.000 .679
M3.e. Trust in people of same ethnic group .241 .173 1.000 .718
M3.f. Trust in people outside ethnic group .198 .127 1.000 .644
M3.g. Trust in people from same church/ mosque .253 .168 1.000 .664
M3.h. Trust in people not from same church/ mosque .219 .164 1.000 .747
Extraction Method: Principal Component Analysis.
Factor Analysis
Factor Analysis - Total Variance Explained - February 17, 2020
Total Variance ExplainedTotal Variance Explained, table, 2 levels of column headers and 2 levels of row headers, table with 11 columns and 89 rows
  Component Initial Eigenvaluesa Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 2.129 24.718 24.718 2.129 24.718 24.718 1.076 12.491 12.491
2 1.268 14.717 39.435 1.268 14.717 39.435 1.197 13.902 26.392
3 .676 7.844 47.279 .676 7.844 47.279 1.030 11.958 38.351
4 .515 5.974 53.253 .515 5.974 53.253 .933 10.829 49.179
5 .437 5.076 58.329 .437 5.076 58.329 .694 8.062 57.241
6 .395 4.590 62.918 .395 4.590 62.918 .489 5.677 62.918
7 .335 3.885 66.803            
8 .286 3.323 70.126            
9 .227 2.636 72.762            
10 .201 2.333 75.095            
11 .185 2.148 77.242            
12 .167 1.934 79.176            
13 .160 1.856 81.032            
14 .143 1.660 82.693            
15 .138 1.597 84.289            
16 .131 1.526 85.815            
17 .111 1.285 87.101            
18 .107 1.238 88.338            
19 .100 1.165 89.503            
20 .092 1.072 90.576            
21 .088 1.019 91.595            
22 .073 .846 92.440            
23 .073 .842 93.282            
24 .068 .792 94.074            
25 .060 .696 94.770            
26 .055 .633 95.403            
27 .050 .584 95.987            
28 .048 .553 96.540            
29 .042 .491 97.031            
30 .037 .424 97.455            
31 .034 .394 97.850            
32 .030 .345 98.195            
33 .029 .341 98.535            
34 .024 .279 98.815            
35 .023 .268 99.083            
36 .021 .241 99.324            
37 .015 .174 99.498            
38 .013 .145 99.643            
39 .011 .133 99.776            
40 .009 .100 99.877            
41 .007 .079 99.956            
42 .004 .044 100.000            
Rescaled 1 2.129 24.718 24.718 9.548 22.734 22.734 5.387 12.825 12.825
2 1.268 14.717 39.435 5.762 13.719 36.453 5.282 12.576 25.401
3 .676 7.844 47.279 3.556 8.468 44.921 4.600 10.952 36.354
4 .515 5.974 53.253 2.394 5.699 50.620 4.077 9.708 46.061
5 .437 5.076 58.329 2.268 5.400 56.021 3.518 8.376 54.437
6 .395 4.590 62.918 2.069 4.926 60.947 2.734 6.510 60.947
7 .335 3.885 66.803            
8 .286 3.323 70.126            
9 .227 2.636 72.762            
10 .201 2.333 75.095            
11 .185 2.148 77.242            
12 .167 1.934 79.176            
13 .160 1.856 81.032            
14 .143 1.660 82.693            
15 .138 1.597 84.289            
16 .131 1.526 85.815            
17 .111 1.285 87.101            
18 .107 1.238 88.338            
19 .100 1.165 89.503            
20 .092 1.072 90.576            
21 .088 1.019 91.595            
22 .073 .846 92.440            
23 .073 .842 93.282            
24 .068 .792 94.074            
25 .060 .696 94.770            
26 .055 .633 95.403            
27 .050 .584 95.987            
28 .048 .553 96.540            
29 .042 .491 97.031            
30 .037 .424 97.455            
31 .034 .394 97.850            
32 .030 .345 98.195            
33 .029 .341 98.535            
34 .024 .279 98.815            
35 .023 .268 99.083            
36 .021 .241 99.324            
37 .015 .174 99.498            
38 .013 .145 99.643            
39 .011 .133 99.776            
40 .009 .100 99.877            
41 .007 .079 99.956            
42 .004 .044 100.000            
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.
Factor Analysis
Factor Analysis - Scree Plot - February 17, 2020
Scree Plot Component Number: 42
Eigenvalue: 0.0038 Component Number: 41
Eigenvalue: 0.0068 Component Number: 40
Eigenvalue: 0.0086 Component Number: 39
Eigenvalue: 0.0115 Component Number: 38
Eigenvalue: 0.0125 Component Number: 37
Eigenvalue: 0.0150 Component Number: 36
Eigenvalue: 0.0207 Component Number: 35
Eigenvalue: 0.0231 Component Number: 34
Eigenvalue: 0.0241 Component Number: 33
Eigenvalue: 0.0294 Component Number: 32
Eigenvalue: 0.0297 Component Number: 31
Eigenvalue: 0.0340 Component Number: 30
Eigenvalue: 0.0365 Component Number: 29
Eigenvalue: 0.0423 Component Number: 28
Eigenvalue: 0.0477 Component Number: 27
Eigenvalue: 0.0503 Component Number: 26
Eigenvalue: 0.0545 Component Number: 25
Eigenvalue: 0.0600 Component Number: 24
Eigenvalue: 0.0682 Component Number: 23
Eigenvalue: 0.0725 Component Number: 22
Eigenvalue: 0.0728 Component Number: 21
Eigenvalue: 0.0878 Component Number: 20
Eigenvalue: 0.0924 Component Number: 19
Eigenvalue: 0.1003 Component Number: 18
Eigenvalue: 0.1066 Component Number: 17
Eigenvalue: 0.1107 Component Number: 16
Eigenvalue: 0.1315 Component Number: 15
Eigenvalue: 0.1375 Component Number: 14
Eigenvalue: 0.1430 Component Number: 13
Eigenvalue: 0.1599 Component Number: 12
Eigenvalue: 0.1666 Component Number: 11
Eigenvalue: 0.1850 Component Number: 10
Eigenvalue: 0.2010 Component Number: 9
Eigenvalue: 0.2270 Component Number: 8
Eigenvalue: 0.2862 Component Number: 7
Eigenvalue: 0.3347 Component Number: 6
Eigenvalue: 0.3953 Component Number: 5
Eigenvalue: 0.4372 Component Number: 4
Eigenvalue: 0.5146 Component Number: 3
Eigenvalue: 0.6757 Component Number: 2
Eigenvalue: 1.2678 Component Number: 1
Eigenvalue: 2.1292 Component Number: 41
Eigenvalue: 0.0068 Component Number: 40
Eigenvalue: 0.0086 Component Number: 39
Eigenvalue: 0.0115 Component Number: 38
Eigenvalue: 0.0125 Component Number: 37
Eigenvalue: 0.0150 Component Number: 36
Eigenvalue: 0.0207 Component Number: 35
Eigenvalue: 0.0231 Component Number: 34
Eigenvalue: 0.0241 Component Number: 33
Eigenvalue: 0.0294 Component Number: 32
Eigenvalue: 0.0297 Component Number: 31
Eigenvalue: 0.0340 Component Number: 30
Eigenvalue: 0.0365 Component Number: 29
Eigenvalue: 0.0423 Component Number: 28
Eigenvalue: 0.0477 Component Number: 27
Eigenvalue: 0.0503 Component Number: 26
Eigenvalue: 0.0545 Component Number: 25
Eigenvalue: 0.0600 Component Number: 24
Eigenvalue: 0.0682 Component Number: 23
Eigenvalue: 0.0725 Component Number: 22
Eigenvalue: 0.0728 Component Number: 21
Eigenvalue: 0.0878 Component Number: 20
Eigenvalue: 0.0924 Component Number: 19
Eigenvalue: 0.1003 Component Number: 18
Eigenvalue: 0.1066 Component Number: 17
Eigenvalue: 0.1107 Component Number: 16
Eigenvalue: 0.1315 Component Number: 15
Eigenvalue: 0.1375 Component Number: 14
Eigenvalue: 0.1430 Component Number: 13
Eigenvalue: 0.1599 Component Number: 12
Eigenvalue: 0.1666 Component Number: 11
Eigenvalue: 0.1850 Component Number: 10
Eigenvalue: 0.2010 Component Number: 9
Eigenvalue: 0.2270 Component Number: 8
Eigenvalue: 0.2862 Component Number: 7
Eigenvalue: 0.3347 Component Number: 6
Eigenvalue: 0.3953 Component Number: 5
Eigenvalue: 0.4372 Component Number: 4
Eigenvalue: 0.5146 Component Number: 3
Eigenvalue: 0.6757 Component Number: 2
Eigenvalue: 1.2678 Component Number: 1
Eigenvalue: 2.1292 0.0 0.5 1.0 1.5 2.0 2.5 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.003811034910513529,"max":2.129201073743022,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,2.129201073743022],[1,1.267759028890319],[2,0.6756927609942726],[3,0.5146040562882145],[4,0.4372197527833368],[5,0.3953447057132984],[6,0.3346506899251034],[7,0.2862485640988612],[8,0.2270367582334641],[9,0.2009531390085752],[10,0.1850122705186145],[11,0.1665891404811874],[12,0.1598911211268763],[13,0.1430190966953667],[14,0.1375280686058958],[15,0.1314520969279299],[16,0.1107165314582841],[17,0.1066318136043668],[18,0.1003431292237114],[19,0.09237377140142342],[20,0.08776311836076917],[21,0.07283713193109544],[22,0.07252468316261708],[23,0.06822034829648929],[24,0.0599670132675816],[25,0.05453898159717519],[26,0.05026379121950589],[27,0.04767209186653266],[28,0.04228702268990851],[29,0.03654258941834906],[30,0.03395827139397963],[31,0.02973489246748427],[32,0.02935002338214026],[33,0.02405448163316533],[34,0.02309339174400565],[35,0.02074189957135905],[36,0.01499602073666641],[37,0.0125320356218092],[38,0.01147767710240499],[39,0.008640931113229647],[40,0.006811334396415845],[41,0.003811034910513529]]}],"size":{"width":850.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis
Factor Analysis - Component Matrix - February 17, 2020
Component MatrixaComponent Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 13 columns and 48 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 1 2 3 4 5 6
K1a Lending money to family members .207 -.204 -.096 .156 .165 .032 .418 -.413 -.195 .316 .334 .065
K1b Lending money to relatives .238 -.209 .061 .081 .144 -.088 .520 -.457 .134 .176 .315 -.192
K1c Lending money to people in your own village .280 -.143 .129 .125 .138 -.101 .562 -.288 .260 .250 .277 -.203
K1d Lending money to people outside the village .091 -.039 .191 .132 .056 -.204 .215 -.092 .451 .312 .134 -.484
K1e Lending money to people from the same mosque/ church .105 -.003 .166 -.085 .165 -.080 .265 -.009 .420 -.216 .417 -.203
K2a Lending tools like axes, hoes etc. to family members .176 -.110 .000 .175 .139 .138 .416 -.260 -.001 .414 .330 .326
K2b Lending tools like axes, hoes etc. to relatives outside the household .126 -.060 .092 .098 .123 .171 .348 -.166 .255 .272 .341 .473
K2c Lending tools like axes, hoes etc. to people in your own village -.015 -.065 .185 .137 .192 .177 -.034 -.146 .415 .309 .433 .399
K2d Lending tools like axes, hoes etc. to people outside the village -.006 .151 .157 .034 .168 .080 -.014 .374 .387 .084 .416 .198
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church -.122 .181 .217 -.052 .088 .227 -.270 .402 .481 -.115 .194 .503
L2 Participated in cooperative agricultural work .336 -.089 .193 -.131 -.132 .076 .670 -.179 .386 -.261 -.264 .151
L3.a. Participated last 12 months in cooperative work of preparing a garden .216 -.031 .188 -.102 -.006 -.107 .473 -.068 .411 -.222 -.012 -.234
L3.b. Participated last12 months in cooperative work of planting .032 -.031 .136 -.026 -.094 -.040 .105 -.101 .446 -.085 -.309 -.131
L3.d. Participated last 12 months in cooperative work of weeding .149 .001 .270 -.062 -.010 -.119 .359 .003 .654 -.149 -.025 -.287
L3.e. Participated last 12 months in cooperative work of harvesting .262 -.074 .228 -.069 -.093 -.071 .554 -.157 .483 -.146 -.197 -.150
L3.f. Participated last 12 months in cooperative work of other agriculture work .318 -.066 .017 -.066 -.140 .148 .665 -.138 .036 -.139 -.292 .310
L6 Participation in other exchange work than agriculture .239 -.138 .039 -.114 -.005 .090 .497 -.286 .082 -.238 -.010 .187
L7 Participated in public works without payment during the last year -.454 .127 .026 -.006 .042 -.052 -.903 .252 .052 -.011 .085 -.104
L8.a. Participated in school project over the last 12 months -.432 .133 .071 .055 .035 -.021 -.859 .265 .140 .110 .069 -.042
L8.b. Participated in road project over the last 12 months -.363 .170 .084 .051 .053 -.052 -.728 .342 .169 .103 .105 -.104
L8.c. Participated in bridge project over the last 12 months -.161 .227 .099 .013 .059 -.061 -.397 .561 .245 .032 .145 -.152
L8.d. Participated in church project over the last 12 months -.216 .220 .155 -.067 -.022 .027 -.494 .502 .353 -.153 -.050 .061
L8.g. Participated in health centre project over the last 12 months -.108 .152 .139 -.025 .055 .088 -.309 .438 .399 -.072 .159 .252
L8.h. Participated in irrigation project over the last 12 months -.089 .044 .081 -.044 -.107 .013 -.292 .144 .266 -.145 -.354 .041
L8.i. Participated in borehole project over the last 12 months -.271 .189 .116 -.030 -.071 .014 -.586 .409 .251 -.064 -.154 .030
L8.k. Participated in graveyard clearing project over the last 12 months -.327 .040 -.124 .039 .123 -.122 -.675 .082 -.255 .080 .254 -.252
M1 Most people can be trusted (1) or you cannot be too careful (0) .352 .150 -.005 .001 .010 -.081 .700 .297 -.011 .002 .020 -.161
M2.d. Trust in Traditional Authorities .124 .231 -.133 -.175 .125 .138 .253 .470 -.271 -.356 .255 .282
M2.e. Trust in group village headmen .226 .243 -.155 -.196 .087 -.063 .451 .485 -.309 -.390 .173 -.125
M2.f. Trust in village headmen .244 .193 -.117 -.206 .135 -.066 .511 .404 -.245 -.431 .284 -.138
M2.j. Trust in police .218 .261 -.053 -.001 .058 -.108 .444 .530 -.109 -.003 .119 -.219
M2.l. Trust in teachers .114 .263 -.002 -.149 .143 .066 .230 .530 -.004 -.300 .288 .133
M2.m.Trust in school administrators .231 .228 .056 -.082 .020 .062 .465 .458 .113 -.164 .039 .125
M2.n. Trust in religious leaders .216 .176 -.206 .050 .089 -.059 .471 .385 -.450 .109 .195 -.129
M3.a. Trust in family members .135 .025 -.034 .051 .031 -.076 .444 .081 -.111 .167 .101 -.249
M3.b. Trust in relatives .196 .043 -.036 -.004 .002 -.030 .525 .116 -.095 -.012 .005 -.081
M3.c. Trust in people in own village .217 .220 -.097 .180 -.032 .029 .433 .438 -.193 .360 -.063 .058
M3.d. Trust in people outside the village .216 .176 -.071 .164 -.166 .093 .466 .380 -.152 .353 -.358 .201
M3.e. Trust in people of same ethnic group .183 .328 .066 .114 -.120 -.022 .373 .668 .134 .232 -.243 -.044
M3.f. Trust in people outside ethnic group .144 .229 -.054 .191 -.098 .070 .323 .515 -.121 .430 -.221 .158
M3.g. Trust in people from same church/ mosque .201 .290 .135 .120 -.011 -.102 .400 .577 .267 .239 -.022 -.202
M3.h. Trust in people not from same church/ mosque .097 .321 .052 .206 -.077 -.004 .207 .686 .110 .441 -.163 -.008
Extraction Method: Principal Component Analysis.
a. 6 components extracted.
Factor Analysis
Factor Analysis - Rotated Component Matrix - February 17, 2020
Rotated Component MatrixaRotated Component Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 13 columns and 48 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 1 2 3 4 5 6
K1a Lending money to family members -.367 .068 -.007 -.027 -.009 .076 -.744 .137 -.014 -.055 -.018 .153
K1b Lending money to relatives -.300 .093 -.042 -.022 .189 .047 -.657 .203 -.092 -.048 .413 .103
K1c Lending money to people in your own village -.280 .094 .041 -.017 .253 .084 -.563 .189 .083 -.034 .508 .168
K1d Lending money to people outside the village -.096 -.060 .065 -.080 .291 .018 -.227 -.141 .153 -.189 .690 .043
K1e Lending money to people from the same mosque/ church -.038 .012 -.072 .115 .222 .099 -.096 .030 -.182 .291 .563 .252
K2a Lending tools like axes, hoes etc. to family members -.251 .087 .058 -.040 -.022 .189 -.595 .207 .136 -.095 -.052 .448
K2b Lending tools like axes, hoes etc. to relatives outside the household -.124 .101 .026 -.022 .009 .234 -.343 .281 .073 -.061 .025 .649
K2c Lending tools like axes, hoes etc. to people in your own village -.067 -.013 -.030 -.092 .036 .333 -.150 -.030 -.068 -.207 .080 .748
K2d Lending tools like axes, hoes etc. to people outside the village .058 -.072 .056 .087 .073 .242 .144 -.179 .138 .216 .181 .599
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .245 -.018 .004 .052 -.015 .306 .543 -.041 .008 .115 -.033 .678
L2 Participated in cooperative agricultural work -.008 .402 .026 .032 .186 .025 -.015 .802 .051 .064 .372 .049
L3.a. Participated last 12 months in cooperative work of preparing a garden -.018 .163 -.004 .070 .270 -.009 -.040 .356 -.010 .153 .592 -.020
L3.b. Participated last12 months in cooperative work of planting .070 .081 .002 -.066 .123 -.020 .230 .268 .008 -.218 .404 -.067
L3.d. Participated last 12 months in cooperative work of weeding .047 .107 .014 .017 .313 .034 .114 .258 .033 .040 .757 .083
L3.e. Participated last 12 months in cooperative work of harvesting -.014 .254 .031 -.006 .281 -.013 -.030 .537 .066 -.013 .594 -.027
L3.f. Participated last 12 months in cooperative work of other agriculture work -.070 .372 .080 .043 .005 -.002 -.146 .779 .169 .089 .011 -.004
L6 Participation in other exchange work than agriculture -.105 .276 -.066 .059 .053 .030 -.218 .574 -.138 .123 .111 .063
L7 Participated in public works without payment during the last year .268 -.361 -.107 -.077 -.083 .023 .533 -.719 -.213 -.153 -.166 .045
L8.a. Participated in school project over the last 12 months .261 -.345 -.057 -.117 -.068 .073 .519 -.686 -.113 -.233 -.136 .145
L8.b. Participated in road project over the last 12 months .239 -.330 -.016 -.064 -.018 .071 .480 -.661 -.032 -.129 -.036 .143
L8.c. Participated in bridge project over the last 12 months .184 -.209 .069 .059 .059 .070 .456 -.518 .172 .145 .146 .172
L8.d. Participated in church project over the last 12 months .311 -.134 .020 .026 .023 .090 .711 -.307 .045 .058 .052 .206
L8.g. Participated in health centre project over the last 12 months .177 -.069 .019 .040 .016 .165 .509 -.197 .055 .114 .045 .473
L8.h. Participated in irrigation project over the last 12 months .163 .010 .000 -.053 .012 -.016 .538 .032 -.002 -.174 .039 -.053
L8.i. Participated in borehole project over the last 12 months .313 -.163 .019 -.042 -.019 .043 .677 -.351 .041 -.090 -.042 .092
L8.k. Participated in graveyard clearing project over the last 12 months .042 -.359 -.108 -.024 -.100 -.051 .086 -.740 -.224 -.050 -.206 -.105
M1 Most people can be trusted (1) or you cannot be too careful (0) -.120 .140 .223 .215 .147 -.040 -.239 .279 .443 .428 .291 -.080
M2.d. Trust in Traditional Authorities .031 .055 .051 .351 -.129 .074 .063 .112 .103 .715 -.263 .150
M2.e. Trust in group village headmen -.025 .048 .097 .404 .005 -.091 -.049 .095 .193 .806 .011 -.182
M2.f. Trust in village headmen -.060 .059 .049 .401 .048 -.055 -.126 .124 .103 .839 .100 -.116
M2.j. Trust in police -.045 -.016 .228 .263 .091 -.041 -.092 -.033 .464 .536 .184 -.082
M2.l. Trust in teachers .074 .011 .073 .326 .006 .110 .149 .022 .148 .656 .011 .222
M2.m.Trust in school administrators .050 .136 .173 .241 .069 .078 .100 .272 .347 .484 .138 .156
M2.n. Trust in religious leaders -.171 -.025 .199 .240 -.046 -.064 -.374 -.054 .436 .526 -.100 -.139
M3.a. Trust in family members -.112 .011 .087 .059 .063 -.036 -.370 .035 .288 .194 .207 -.119
M3.b. Trust in relatives -.093 .094 .098 .107 .050 -.036 -.248 .253 .262 .288 .135 -.096
M3.c. Trust in people in own village -.095 .031 .341 .104 -.043 .012 -.190 .061 .680 .208 -.086 .024
M3.d. Trust in people outside the village -.030 .139 .344 .021 -.077 -.017 -.064 .299 .744 .045 -.166 -.037
M3.e. Trust in people of same ethnic group .095 .040 .379 .107 .084 .007 .194 .081 .772 .219 .171 .014
M3.f. Trust in people outside ethnic group -.007 .031 .346 .034 -.068 .027 -.016 .070 .778 .077 -.153 .060
M3.g. Trust in people from same church/ mosque .033 -.013 .330 .123 .202 .046 .066 -.025 .656 .244 .401 .092
M3.h. Trust in people not from same church/ mosque .074 -.056 .385 .043 .038 .056 .159 -.119 .823 .091 .081 .120
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 12 iterations.
Factor Analysis
Factor Analysis - Component Transformation Matrix - February 17, 2020
Component Transformation MatrixComponent Transformation Matrix, table, 1 levels of column headers and 1 levels of row headers, table with 7 columns and 9 rows
Component 1 2 3 4 5 6
1 -.489 .637 .372 .357 .297 -.018
2 .473 -.286 .630 .535 -.036 .098
3 .393 .150 -.031 -.270 .717 .485
4 -.406 -.318 .602 -.565 -.049 .223
5 -.445 -.439 -.316 .438 .114 .552
6 .143 .442 .000 -.048 -.618 .633
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Factor Analysis
Factor Analysis - Component Plot of Factors 1, 2, 3 - February 17, 2020
Component Plot of Factors 1, 2, 3 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 Component 1: 0.1942
Component 2: 0.0806
Component 3: 0.7720 Component 1: 0.1586
Component 2: -0.1194
Component 3: 0.8233 Component 1: -0.0158
Component 2: 0.0705
Component 3: 0.7781 Component 1: -0.0638
Component 2: 0.2994
Component 3: 0.7441 Component 1: 0.0657
Component 2: -0.0254
Component 3: 0.6556 Component 1: -0.1897
Component 2: 0.0609
Component 3: 0.6799 Component 1: 0.7110
Component 2: -0.3072
Component 3: 0.0448 Component 1: 0.1005
Component 2: 0.2724
Component 3: 0.3469 Component 1: 0.6769
Component 2: -0.3513
Component 3: 0.0415 Component 1: -0.0922
Component 2: -0.0333
Component 3: 0.4638 Component 1: 0.5377
Component 2: 0.0324
Component 3: -0.0016 Component 1: 0.4561
Component 2: -0.5178
Component 3: 0.1717 Component 1: 0.5432
Component 2: -0.0410
Component 3: 0.0078 Component 1: 0.5089
Component 2: -0.1973
Component 3: 0.0549 Component 1: -0.2386
Component 2: 0.2792
Component 3: 0.4432 Component 1: 0.1491
Component 2: 0.0220
Component 3: 0.1477 Component 1: -0.1460
Component 2: 0.7786
Component 3: 0.1686 Component 1: 0.2296
Component 2: 0.2678
Component 3: 0.0076 Component 1: -0.0154
Component 2: 0.8016
Component 3: 0.0510 Component 1: 0.1445
Component 2: -0.1792
Component 3: 0.1379 Component 1: -0.0492
Component 2: 0.0951
Component 3: 0.1932 Component 1: 0.0631
Component 2: 0.1122
Component 3: 0.1034 Component 1: 0.1135
Component 2: 0.2581
Component 3: 0.0332 Component 1: -0.3745
Component 2: -0.0542
Component 3: 0.4358 Component 1: 0.4799
Component 2: -0.6613
Component 3: -0.0324 Component 1: -0.0297
Component 2: 0.5371
Component 3: 0.0661 Component 1: -0.2483
Component 2: 0.2530
Component 3: 0.2625 Component 1: 0.5191
Component 2: -0.6860
Component 3: -0.1126 Component 1: -0.1258
Component 2: 0.1243
Component 3: 0.1029 Component 1: -0.0397
Component 2: 0.3556
Component 3: -0.0096 Component 1: -0.3701
Component 2: 0.0354
Component 3: 0.2882 Component 1: 0.5333
Component 2: -0.7193
Component 3: -0.2126 Component 1: -0.2265
Component 2: -0.1411
Component 3: 0.1534 Component 1: -0.3431
Component 2: 0.2808
Component 3: 0.0733 Component 1: -0.2180
Component 2: 0.5735
Component 3: -0.1377 Component 1: -0.1502
Component 2: -0.0296
Component 3: -0.0683 Component 1: -0.5946
Component 2: 0.2071
Component 3: 0.1362 Component 1: -0.0956
Component 2: 0.0302
Component 3: -0.1820 Component 1: -0.5626
Component 2: 0.1885
Component 3: 0.0828 Component 1: 0.0865
Component 2: -0.7404
Component 3: -0.2237 Component 1: -0.7436
Component 2: 0.1371
Component 3: -0.0140 Component 1: -0.6571
Component 2: 0.2033
Component 3: -0.0922